IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1429-d1611567.html
   My bibliography  Save this article

Optimization Techniques for Low-Level Control of DC–AC Converters in Renewable-Integrated Microgrids: A Brief Review

Author

Listed:
  • Guilherme Vieira Hollweg

    (Department of Electrical and Computer Engineering (ECE), University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Gajendra Singh Chawda

    (Department of Electrical and Computer Engineering (ECE), University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Shivam Chaturvedi

    (Department of Electrical and Computer Engineering (ECE), University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Van-Hai Bui

    (Department of Electrical and Computer Engineering (ECE), University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Wencong Su

    (Department of Electrical and Computer Engineering (ECE), University of Michigan-Dearborn, Dearborn, MI 48128, USA)

Abstract

The optimization of low-level control for DC–AC power converters is crucial for enhancing efficiency, stability, and adaptability in modern power systems. With the increasing penetration of renewable energy sources and the shift toward decentralized grid architectures, advanced control strategies are needed to address challenges such as reduced system inertia and dynamic operating conditions. This paper provides a concise review of key optimization techniques for low-level control, highlighting their advantages, limitations, and applicability. Additionally, emerging trends, such as artificial intelligence (AI)-based real-time control algorithms and hybrid optimization approaches, are explored as potential enablers for the next generation of power conversion systems. Notably, no single optimized control technique universally outperforms others, as each involves trade-offs in mathematical complexity, robustness, computational burden, and implementation feasibility. Therefore, selecting the most appropriate control strategy requires a thorough understanding of the specific application and system constraints.

Suggested Citation

  • Guilherme Vieira Hollweg & Gajendra Singh Chawda & Shivam Chaturvedi & Van-Hai Bui & Wencong Su, 2025. "Optimization Techniques for Low-Level Control of DC–AC Converters in Renewable-Integrated Microgrids: A Brief Review," Energies, MDPI, vol. 18(6), pages 1-29, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1429-:d:1611567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    2. Gustavo G. Koch & Caio R. D. Osório & Ricardo C. L. F. Oliveira & Vinícius F. Montagner, 2023. "Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters," Energies, MDPI, vol. 16(4), pages 1-24, February.
    3. Gao, Fang & Hu, Rongzhao & Yin, Linfei, 2023. "Variable boundary reinforcement learning for maximum power point tracking of photovoltaic grid-connected systems," Energy, Elsevier, vol. 264(C).
    4. Mbungu, Nsilulu T. & Siti, Mukwanga W. & Bansal, Ramesh C. & Naidoo, Raj M. & Elnady, A. & Ismail, Ali A. Adam & Abokhali, Ahmed G. & Hamid, Abdul-Kadir, 2025. "A dynamic coordination of microgrids," Applied Energy, Elsevier, vol. 377(PD).
    5. Neto, Pedro Bezerra Leite & Saavedra, Osvaldo R. & Oliveira, Denisson Q., 2020. "The effect of complementarity between solar, wind and tidal energy in isolated hybrid microgrids," Renewable Energy, Elsevier, vol. 147(P1), pages 339-355.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yajing Gu & He Ren & Hongwei Liu & Yonggang Lin & Weifei Hu & Tian Zou & Liyuan Zhang & Luoyang Huang, 2024. "Simulation of a Tidal Current-Powered Freshwater and Energy Supply System for Sustainable Island Development," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
    2. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    3. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    4. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).
    5. Rafael B. S. Veras & Clóvis B. M. Oliveira & Shigeaki L. de Lima & Osvaldo R. Saavedra & Denisson Q. Oliveira & Felipe M. Pimenta & Denivaldo C. P. Lopes & Audálio R. Torres Junior & Francisco L. A. N, 2023. "Assessing Economic Complementarity in Wind–Solar Hybrid Power Plants Connected to the Brazilian Grid," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    6. Miguel Vicente & Alessandra Imperadore & Francisco X. Correia da Fonseca & Mário Vieira & José Cândido, 2023. "Enhancing Islanded Power Systems: Microgrid Modeling and Evaluating System Benefits of Ocean Renewable Energy Integration," Energies, MDPI, vol. 16(22), pages 1-16, November.
    7. Keisar, David & Arava, Idan & Greenblatt, David, 2024. "Dynamic-stall-driven vertical axis wind turbine: An experimental parametric study," Applied Energy, Elsevier, vol. 365(C).
    8. Jakub Jurasz & Jerzy Mikulik & Paweł B. Dąbek & Mohammed Guezgouz & Bartosz Kaźmierczak, 2021. "Complementarity and ‘Resource Droughts’ of Solar and Wind Energy in Poland: An ERA5-Based Analysis," Energies, MDPI, vol. 14(4), pages 1-24, February.
    9. Canales, Fausto A. & Sapiega, Patryk & Kasiulis, Egidijus & Jonasson, Erik & Temiz, Irina & Jurasz, Jakub, 2024. "Temporal dynamics and extreme events in solar, wind, and wave energy complementarity: Insights from the Polish Exclusive Economic Zone," Energy, Elsevier, vol. 305(C).
    10. Karl Ezra S. Pilario & Jessa A. Ibañez & Xaviery N. Penisa & Johndel B. Obra & Carl Michael F. Odulio & Joey D. Ocon, 2022. "Spatio-Temporal Solar–Wind Complementarity Assessment in the Province of Kalinga-Apayao, Philippines Using Canonical Correlation Analysis," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    11. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Ogunmodede, Oluwaseun & Anderson, Kate & Cutler, Dylan & Newman, Alexandra, 2021. "Optimizing design and dispatch of a renewable energy system," Applied Energy, Elsevier, vol. 287(C).
    13. Silva, R.N. & Nunes, M.M. & Oliveira, F.L. & Oliveira, T.F. & Brasil, A.C.P. & Pinto, M.S.S., 2023. "Dynamical analysis of a novel hybrid oceanic tidal-wave energy converter system," Energy, Elsevier, vol. 263(PD).
    14. Michal Lipian & Pawel Czapski & Damian Obidowski, 2020. "Fluid–Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade," Energies, MDPI, vol. 13(7), pages 1-15, April.
    15. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Shaheen, Abdullah M. & Ginidi, Ahmed R. & El-Sehiemy, Ragab A. & El-Fergany, Attia & Elsayed, Abdallah M., 2023. "Optimal parameters extraction of photovoltaic triple diode model using an enhanced artificial gorilla troops optimizer," Energy, Elsevier, vol. 283(C).
    17. Liu, Xiangjie & Zhu, Zheng & Kong, Xiaobing & Ma, Lele & Lee, Kwang Y., 2023. "An economic model predictive control-based flexible power point tracking strategy for photovoltaic power generation," Energy, Elsevier, vol. 283(C).
    18. Kang, Dongju & Kang, Doeun & Hwangbo, Sumin & Niaz, Haider & Lee, Won Bo & Liu, J. Jay & Na, Jonggeol, 2023. "Optimal planning of hybrid energy storage systems using curtailed renewable energy through deep reinforcement learning," Energy, Elsevier, vol. 284(C).
    19. Yang, Ting & Xu, Zheming & Ji, Shijie & Liu, Guoliang & Li, Xinhong & Kong, Haibo, 2025. "Cooperative optimal dispatch of multi-microgrids for low carbon economy based on personalized federated reinforcement learning," Applied Energy, Elsevier, vol. 378(PA).
    20. Diana Cantor & Andrés Ochoa & Oscar Mesa, 2022. "Total Variation-Based Metrics for Assessing Complementarity in Energy Resources Time Series," Sustainability, MDPI, vol. 14(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1429-:d:1611567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.