IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924005828.html
   My bibliography  Save this article

Dynamic-stall-driven vertical axis wind turbine: An experimental parametric study

Author

Listed:
  • Keisar, David
  • Arava, Idan
  • Greenblatt, David

Abstract

Dynamic stall on the blades of low-solidity vertical axis wind turbines (VAWTs) is a major problem due to its adverse effects on performance, drive-train components, and generator sizing. However, when the turbine chord-to-radius ratios are relatively large, greater than approximately 0.5, counterintuitively, dynamic stall can be harnessed to produce useful torque. To examine this seeming contradiction, a wind tunnel study was conducted on a two-bladed, H-rotor test-turbine where the blade chord-to-radius ratio, blade profile (NACA 0012 and NACA 0021), preset angle, strut-blade offset (connection point), and Reynolds number were varied systematically. Large chord-to-radius ratios, between 0.6 and 1.2, and hence high solidities, were selected to ensure that the maximum driving torque was produced by dynamic stall. At low Reynolds numbers (<105), turbine performance with NACA 0021 blades was vastly superior to that with the thinner NACA 0012 blades, producing approximately 90% greater power and torque coefficients at blade tip-speed ratios between 0.8 and 1.6. This difference was due mainly to the vastly different dynamic stall behavior of the two profiles. The high turbine power coefficients, CP,max>0.3, were obtained with the NACA 0021 blades when the preset angles were close to zero and the strut-blade offset was at the mid-chord location. Tuft-based flow visualization showed that an aft dynamic stall vortex on the NACA 0021 blades precedes the conventional leading-edge vortex, also present on the NACA 0012 blades, resulting in substantially greater post-stall dynamic lift. Nevertheless, NACA 0012 showed a far stronger Reynolds number dependence. In addition, the similarity between preset and offset effects was explained by a new approach to describing the virtual preset angle dependence on the offset point.

Suggested Citation

  • Keisar, David & Arava, Idan & Greenblatt, David, 2024. "Dynamic-stall-driven vertical axis wind turbine: An experimental parametric study," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924005828
    DOI: 10.1016/j.apenergy.2024.123199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924005828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.