IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1106-d1598628.html
   My bibliography  Save this article

Combined State-of-Charge Estimation Method for Lithium-Ion Batteries Using Long Short-Term Memory Network and Unscented Kalman Filter

Author

Listed:
  • Long Pu

    (School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China)

  • Chun Wang

    (School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
    Sichuan Provincial Key Lab of Process Equipment and Control, Sichuan University of Science and Engineering, Zigong 643000, China)

Abstract

The state of charge (SOC) of lithium-ion batteries (LIBs) is a pivotal metric within the battery management system (BMS) of electric vehicles (EVs). An accurate SOC is crucial to ensuring both the safety and the operational efficiency of a battery. The unscented Kalman filter (UKF) is a classic and commonly used method among the various SOC estimation algorithms. However, an unscented transform (UT) utilized in the algorithm struggles to completely simulate the probability density function of actual data. Additionally, inaccuracies in the identification of battery model parameters can lead to performance degradation or even the divergence of the algorithm in SOC estimation. To address these challenges, this study introduces a combined UKF-LSTM algorithm that integrates a long short-term memory (LSTM) network with the UKF for the precise SOC estimation of LIBs. Firstly, the particle swarm optimization (PSO) algorithm was utilized to accurately identify the parameters of the battery model. Secondly, feature parameters that exhibited a high correlation with the estimation error of the UKF were selected to train an LSTM network, which was then combined with the UKF to establish the joint algorithm. Lastly, the effectiveness of the UKF-LSTM was confirmed under various conditions. The outcomes demonstrate that the average absolute error (MAE) and the root mean square error (RMSE) for the SOC estimation by the algorithm were less than 0.7%, indicating remarkable estimation accuracy and robustness.

Suggested Citation

  • Long Pu & Chun Wang, 2025. "Combined State-of-Charge Estimation Method for Lithium-Ion Batteries Using Long Short-Term Memory Network and Unscented Kalman Filter," Energies, MDPI, vol. 18(5), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1106-:d:1598628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeeshan Ahmad Khan & Prashant Shrivastava & Syed Muhammad Amrr & Saad Mekhilef & Abdullah A. Algethami & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "A Comparative Study on Different Online State of Charge Estimation Algorithms for Lithium-Ion Batteries," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    2. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    3. Chai, Xuqing & Li, Shihao & Liang, Fengwei, 2024. "A novel battery SOC estimation method based on random search optimized LSTM neural network," Energy, Elsevier, vol. 306(C).
    4. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    2. Carla Menale & Francesco Vitiello & Antonio Nicolò Mancino & Antonio Scotini & Livia Della Seta & Francesco Vellucci & Roberto Bubbico, 2024. "Performance of Protection Devices Integrated into Lithium-Ion Cells during Overcharge Abuse Test," Energies, MDPI, vol. 17(19), pages 1-17, September.
    3. Ruan, Guanqiang & Liu, Zixi & Cheng, Jinrun & Hu, Xing & Chen, Song & Liu, Shiwen & Guo, Yong & Yang, Kuo, 2024. "A deep learning model for predicting the state of energy in lithium-ion batteries based on magnetic field effects," Energy, Elsevier, vol. 304(C).
    4. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    5. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
    6. Qian, Cheng & Guan, Hongsheng & Xu, Binghui & Xia, Quan & Sun, Bo & Ren, Yi & Wang, Zili, 2024. "A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions," Energy, Elsevier, vol. 294(C).
    7. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    8. Wu, Jiang & Lei, Dong & Liu, Zelong & Zhang, Yan, 2024. "A fusion algorithm of multidimensional element space mapping architecture for SOC estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 311(C).
    9. Chai, Xuqing & Li, Shihao & Liang, Fengwei, 2024. "A novel battery SOC estimation method based on random search optimized LSTM neural network," Energy, Elsevier, vol. 306(C).
    10. Bastida, Hector & De la Cruz-Loredo, Ivan & Saikia, Pranaynil & Ugalde-Loo, Carlos E., 2024. "Discrete-time state-of-charge estimator for latent heat thermal energy storage units based on a recurrent neural network," Applied Energy, Elsevier, vol. 371(C).
    11. Yu, Hanqing & Zhang, Lisheng & Wang, Wentao & Li, Shen & Chen, Siyan & Yang, Shichun & Li, Junfu & Liu, Xinhua, 2023. "State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries," Energy, Elsevier, vol. 278(C).
    12. Gomez, William & Wang, Fu-Kwun & Chou, Jia-Hong, 2024. "Li-ion battery capacity prediction using improved temporal fusion transformer model," Energy, Elsevier, vol. 296(C).
    13. Li, Feng & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & Zhang, Guangde, 2024. "State-of-charge estimation of lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN model," Energy, Elsevier, vol. 289(C).
    14. Zhang, Wencan & He, Hancheng & Li, Taotao & Yuan, Jiangfeng & Xie, Yi & Long, Zhuoru, 2024. "Lithium-ion battery state of health prognostication employing multi-model fusion approach based on image coding of charging voltage and temperature data," Energy, Elsevier, vol. 296(C).
    15. Wei, Meng & Ye, Min & Zhang, Chuanwei & Li, Yan & Zhang, Jiale & Wang, Qiao, 2023. "A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling," Energy, Elsevier, vol. 283(C).
    16. Zafar, Muhammad Hamza & Mansoor, Majad & Abou Houran, Mohamad & Khan, Noman Mujeeb & Khan, Kamran & Raza Moosavi, Syed Kumayl & Sanfilippo, Filippo, 2023. "Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles," Energy, Elsevier, vol. 282(C).
    17. Wei, Meng & Ye, Min & Zhang, Chuanwei & Wang, Qiao & Lian, Gaoqi & Xia, Baozhou, 2024. "Integrating mechanism and machine learning based capacity estimation for LiFePO4 batteries under slight overcharge cycling," Energy, Elsevier, vol. 296(C).
    18. Sulaiman, Mohd Herwan & Mustaffa, Zuriani & Mohamed, Amir Izzani & Samsudin, Ahmad Salihin & Mohd Rashid, Muhammad Ikram, 2024. "Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks," Energy, Elsevier, vol. 311(C).
    19. Wang, Fengfei & Tang, Shengjin & Han, Xuebing & Yu, Chuanqiang & Sun, Xiaoyan & Lu, Languang & Ouyang, Minggao, 2024. "Capacity prediction of lithium-ion batteries with fusing aging information," Energy, Elsevier, vol. 293(C).
    20. Piotr Szewczyk & Andrzej Łebkowski, 2022. "Comparative Studies on Batteries for the Electrochemical Energy Storage in the Delivery Vehicle," Energies, MDPI, vol. 15(24), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1106-:d:1598628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.