Enhancing Energy Autonomy in an e-Houseboat: Integration of Renewable Energy Sources with Hybrid Energy Storage Systems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Laryea, Harriet & Schiffauerova, Andrea, 2024. "A novel standalone hybrid renewable energy systems onboard conventional and autonomous tugboats," Energy, Elsevier, vol. 303(C).
- Shahryar Jafarinejad & Rebecca R. Hernandez & Sajjad Bigham & Bryan S. Beckingham, 2023. "The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
- Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
- Liu, Shujun & Wang, Yao & Liu, Qi & Panchal, Satyam & Zhao, Jiapei & Fowler, Michael & Fraser, Roydon & Yuan, Jinliang, 2024. "Thermal equalization design for the battery energy storage system (BESS) of a fully electric ship," Energy, Elsevier, vol. 312(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Langer, Lissy & Volling, Thomas, 2022. "A reinforcement learning approach to home energy management for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 327(C).
- Xie, Peilin & Zhou, Fan & Tan, Sen & Liso, Vincenzo & Sahlin, Simon Lennart, 2025. "Development of a two-layer control and management system for a residential microgrid with HT-PEMFC-based micro-CHP," Applied Energy, Elsevier, vol. 381(C).
- Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
- Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
- Binghui Han & Younes Zahraoui & Marizan Mubin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski, 2023. "Optimal Strategy for Comfort-Based Home Energy Management System Considering Impact of Battery Degradation Cost Model," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
- Karol Bot & Inoussa Laouali & António Ruano & Maria da Graça Ruano, 2021. "Home Energy Management Systems with Branch-and-Bound Model-Based Predictive Control Techniques," Energies, MDPI, vol. 14(18), pages 1-27, September.
- Wei, Zhichen & Calautit, John Kaiser, 2024. "Field experiment testing of a low-cost model predictive controller (MPC) for building heating systems and analysis of phase change material (PCM) integration," Applied Energy, Elsevier, vol. 360(C).
- Diab, Ibrahim & Damianakis, Nikolaos & Chandra-Mouli, Gautham Ram & Bauer, Pavol, 2024. "A shared PV system for transportation and residential loads to reduce curtailment and the need for storage systems," Applied Energy, Elsevier, vol. 353(PB).
- Rikkas, Rebecka & Lahdelma, Risto, 2021. "Energy supply and storage optimization for mixed-type buildings," Energy, Elsevier, vol. 231(C).
- Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & de Gracia, Alvaro & Cabeza, Luisa F., 2021. "Systematic review on model predictive control strategies applied to active thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Lissy Langer, 2020. "An Optimal Peer-to-Peer Market Considering Modulating Heat Pumps and Photovoltaic Systems under the German Levy Regime," Energies, MDPI, vol. 13(20), pages 1-25, October.
- Larisa Gorina & Elena Korneeva & Olga Kovaleva & Wadim Strielkowski, 2024. "Energy‐saving technologies and energy efficiency in the post‐COVID era," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(5), pages 5294-5310, October.
- Wei, Zhichen & Calautit, John, 2023. "Predictive control of low-temperature heating system with passive thermal mass energy storage and photovoltaic system: Impact of occupancy patterns and climate change," Energy, Elsevier, vol. 269(C).
- Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika, 2024. "Residential consumer enrollment in demand response: An agent based approach," Applied Energy, Elsevier, vol. 374(C).
- Efkarpidis, Nikolaos A. & Vomva, Styliani A. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2022. "Optimal day-to-day scheduling of multiple energy assets in residential buildings equipped with variable-speed heat pumps," Applied Energy, Elsevier, vol. 312(C).
- Zhang, Heng & Zhang, Shenxi & Hu, Xiao & Cheng, Haozhong & Gu, Qingfa & Du, Mengke, 2022. "Parametric optimization-based peer-to-peer energy trading among commercial buildings considering multiple energy conversion," Applied Energy, Elsevier, vol. 306(PB).
- Vering, Christian & Maier, Laura & Breuer, Katharina & Krützfeldt, Hannah & Streblow, Rita & Müller, Dirk, 2022. "Evaluating heat pump system design methods towards a sustainable heat supply in residential buildings," Applied Energy, Elsevier, vol. 308(C).
- Yoorae Noh & Shahryar Jafarinejad & Prashant Anand, 2024. "A Review on Harnessing Renewable Energy Synergies for Achieving Urban Net-Zero Energy Buildings: Technologies, Performance Evaluation, Policies, Challenges, and Future Direction," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
- Pergantis, Elias N. & Priyadarshan, & Theeb, Nadah Al & Dhillon, Parveen & Ore, Jonathan P. & Ziviani, Davide & Groll, Eckhard A. & Kircher, Kevin J., 2024. "Field demonstration of predictive heating control for an all-electric house in a cold climate," Applied Energy, Elsevier, vol. 360(C).
- Qu, Lei & Wang, Dengjia & Zhou, Yong & Yuan, Wangqiu & Liu, Yanfeng & Fan, Jianhua, 2025. "A new capacity design method for PV-ASHP system based on energy flow mechanism and energy supply-demand balance," Renewable Energy, Elsevier, vol. 239(C).
More about this item
Keywords
hybrid battery energy storage system; renewable energy sources; houseboat; energy-autonomous houseboat;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1080-:d:1597779. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.