IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p979-d1593622.html
   My bibliography  Save this article

Economic Impact of Energy Accounting Schemes for Commercial Systems on a Broiler Farm with Power Demand and Generation

Author

Listed:
  • Yi Liang

    (Department of Biological and Agricultural Engineering, 203 White Engineering Hall, Fayetteville, AR 72701, USA)

  • Michael Popp

    (Department of Agricultural Economics and Agribusiness, 405 N Campus Walk, Fayetteville, AR 72703, USA)

Abstract

The aim of this study was to assess the impact of the on-farm solar photovoltaic (PV) generation to offset grid electricity consumption on a commercial poultry farm in the US. Hourly electricity production by PV systems was estimated using the System Advisor Model (SAM) of the National Renewable Energy Lab (NREL) and compared with the estimated electric load demand of a broiler house. We analyzed the economic benefits of installing solar systems of three capacities under net energy metering and net energy billing pricing scenarios. Results suggested that a smaller PV installation of 35 kW p , while substantially short of meeting energy needs, resulted in an 85% self-consumption ratio, whereas the larger 70 kW p and 105 kW p PV systems, led to 59% and 42% self-consumption ratios, respectively. This is important when analyzing pricing schemes as lesser amounts of PV energy created are sold to the grid with the smallest system, and, thereby, the least pricing effects on profitability occur across pricing scenarios. Although all scenarios lead to positive net present values (NPVs), under either type of the pricing scenarios, farm business owners realize more favorable energy sales with NEM, which would spur PV system adoption. Results of this study thus provide information to both poultry farmers, considering the size of system installations and policy makers interested in affordably increasing renewable energy supplies and/or rural development.

Suggested Citation

  • Yi Liang & Michael Popp, 2025. "Economic Impact of Energy Accounting Schemes for Commercial Systems on a Broiler Farm with Power Demand and Generation," Energies, MDPI, vol. 18(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:979-:d:1593622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bazen, Ernest F. & Brown, Matthew A., 2009. "Feasibility of solar technology (photovoltaic) adoption: A case study on Tennessee's poultry industry," Renewable Energy, Elsevier, vol. 34(3), pages 748-754.
    2. Hughes, Larry & Bell, Jeff, 2006. "Compensating customer-generators: a taxonomy describing methods of compensating customer-generators for electricity supplied to the grid," Energy Policy, Elsevier, vol. 34(13), pages 1532-1539, September.
    3. Brothers, Dennis L. & Duke, Joshua M. & Rabinowitz, Adam & Gamez, Jose Garcia, 2022. "Factors Affecting Solar System Profitability for Southeastern Broiler Growers," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2022.
    4. Antans Sauhats & Laila Zemite & Lubov Petrichenko & Igor Moshkin & Aivo Jasevics, 2018. "Estimating the Economic Impacts of Net Metering Schemes for Residential PV Systems with Profiling of Power Demand, Generation, and Market Prices," Energies, MDPI, vol. 11(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    2. Junlakarn, Siripha & Kittner, Noah & Tongsopit, Sopitsuda & Saelim, Supawan, 2021. "A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Ahmed S. Alahmed & Lang Tong, 2022. "Integrating Distributed Energy Resources: Optimal Prosumer Decisions and Impacts of Net Metering Tariffs," Papers 2204.06115, arXiv.org, revised May 2022.
    4. Mir-Artigues, Pere & del Río, Pablo & Cerdá, Emilio, 2018. "The impact of regulation on demand-side generation. The case of Spain," Energy Policy, Elsevier, vol. 121(C), pages 286-291.
    5. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    6. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," Energy Policy, Elsevier, vol. 152(C).
    7. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    8. Gad, S. & El-Shazly, M.A. & Wasfy, Kamal I. & Awny, A., 2020. "Utilization of solar energy and climate control systems for enhancing poultry houses productivity," Renewable Energy, Elsevier, vol. 154(C), pages 278-289.
    9. Junhyung Kim & Keon Baek & Eunjung Lee & Jinho Kim, 2023. "Analysis of Net-Metering and Cross-Subsidy Effects in South Korea: Economic Impact across Residential Customer Groups by Electricity Consumption Level," Energies, MDPI, vol. 16(2), pages 1-14, January.
    10. Mir-Artigues, Pere, 2013. "The Spanish regulation of the photovoltaic demand-side generation," Energy Policy, Elsevier, vol. 63(C), pages 664-673.
    11. Gregorio Fernández & Alejandro Martínez & Noemí Galán & Javier Ballestín-Fuertes & Jesús Muñoz-Cruzado-Alba & Pablo López & Simon Stukelj & Eleni Daridou & Alessio Rezzonico & Dimosthenis Ioannidis, 2021. "Optimal D-STATCOM Placement Tool for Low Voltage Grids," Energies, MDPI, vol. 14(14), pages 1-31, July.
    12. Lubov Petrichenko & Antans Sauhats & Illia Diahovchenko & Irina Segeda, 2022. "Economic Viability of Energy Communities versus Distributed Prosumers," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    13. Mansour Jalali & Ahmad Banakar & Behfar Farzaneh & Mehdi Montazeri, 2023. "Reducing Energy Consumption in a Poultry Farm by Designing and Optimizing the Solar Heating/Photovoltaic System," Sustainability, MDPI, vol. 15(7), pages 1-33, March.
    14. Azadian, Farshad & Radzi, M.A.M., 2013. "A general approach toward building integrated photovoltaic systems and its implementation barriers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 527-538.
    15. Qudrat-Ullah, Hassan & Kayal, Aymen & Mugumya, Andrew, 2021. "Cost-effective energy billing mechanisms for small and medium-scale industrial customers in Uganda," Energy, Elsevier, vol. 227(C).
    16. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).
    17. Pere Mir-Artigues, 2013. "The Photovoltaic Crisis and the Demand-side Generation in Spain," Cambridge Working Papers in Economics 1311, Faculty of Economics, University of Cambridge.
    18. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    19. Fikru, Mahelet G. & Gautier, Luis, 2023. "Consumption and production of cleaner energy by prosumers," Energy Economics, Elsevier, vol. 124(C).
    20. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:979-:d:1593622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.