IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p811-d1587222.html
   My bibliography  Save this article

Sustainable Geothermal Energy: A Review of Challenges and Opportunities in Deep Wells and Shallow Heat Pumps for Transitioning Professionals

Author

Listed:
  • Tawfik Elshehabi

    (Energy and Petroleum Engineering Department, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA)

  • Mohammad Alfehaid

    (Energy and Petroleum Engineering Department, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
    Department of Geology & Geophysics, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA)

Abstract

Geothermal energy has emerged as a cornerstone in renewable energy, delivering reliable, low-emission baseload electricity and heating solutions. This review bridges the current knowledge gap by addressing challenges and opportunities for engineers and scientists, especially those transitioning from other professions. It examines deep and shallow geothermal systems and explores the advanced technologies and skills required across various climates and environments. Transferable expertise in drilling, completion, subsurface evaluation, and hydrological assessment is required for geothermal development but must be adapted to meet the demands of high-temperature, high-pressure environments; abrasive rocks; and complex downhole conditions. Emerging technologies like Enhanced Geothermal Systems (EGSs) and closed-loop systems enable sustainable energy extraction from impermeable and dry formations. Shallow systems utilize near-surface thermal gradients, hydrology, and soil conditions for efficient heat pump operations. Sustainable practices, including reinjection, machine learning-driven fracture modeling, and the use of corrosion-resistant alloys, enhance well integrity and long-term performance. Case studies like Utah FORGE and the Geysers in California, US, demonstrate hydraulic stimulation, machine learning, and reservoir management, while Cornell University has advanced integrated hybrid geothermal systems. Government incentives, such as tax credits under the Inflation Reduction Act, and academic initiatives, such as adopting geothermal energy at Cornell and Colorado Mesa Universities, are accelerating geothermal integration. These advancements, combined with transferable expertise, position geothermal energy as a major contributor to the global transition to renewable energy.

Suggested Citation

  • Tawfik Elshehabi & Mohammad Alfehaid, 2025. "Sustainable Geothermal Energy: A Review of Challenges and Opportunities in Deep Wells and Shallow Heat Pumps for Transitioning Professionals," Energies, MDPI, vol. 18(4), pages 1-29, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:811-:d:1587222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Kewen & Bian, Huiyuan & Liu, Changwei & Zhang, Danfeng & Yang, Yanan, 2015. "Comparison of geothermal with solar and wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1464-1474.
    2. Maragna, Charles & Altamirano, Amín & Tréméac, Brice & Fabre, Florent & Rouzic, Laurène & Barcellini, Pierre, 2024. "Design and optimization of a geothermal absorption cooling system in a tropical climate," Applied Energy, Elsevier, vol. 364(C).
    3. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    4. Yutong Chai & Zhuoheng Chen & Shunde Yin, 2024. "Numerical Simulation of Geothermal Energy Development at Mount Meager and Its Impact on In Situ Thermal Stress," Energies, MDPI, vol. 17(14), pages 1-17, July.
    5. Ebrahim Fathi & Georges Brown Liwuitekong Dongho & Babak Heidari & Timothy R. Carr & Fatemeh Belyadi & Ilkin Bilgesu, 2024. "Optimizing Deep Geothermal Drilling for Energy Sustainability in the Appalachian Basin," Sustainability, MDPI, vol. 16(18), pages 1-16, September.
    6. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    7. O'Sullivan, Michael & Gravatt, Michael & Popineau, Joris & O'Sullivan, John & Mannington, Warren & McDowell, Julian, 2021. "Carbon dioxide emissions from geothermal power plants," Renewable Energy, Elsevier, vol. 175(C), pages 990-1000.
    8. Rauan Meirbekova & Dario Bonciani & Dagur Ingi Olafsson & Aysun Korucan & Pinar Derin-Güre & Virginie Harcouët-Menou & Wilfried Bero, 2024. "Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy," Energies, MDPI, vol. 17(16), pages 1-27, August.
    9. Nikitin, Andrey & Farahnak, Mehdi & Deymi-Dashtebayaz, Mahdi & Muraveinikov, Sergei & Nikitina, Veronika & Nazeri, Reza, 2022. "Effect of ice thickness and snow cover depth on performance optimization of ground source heat pump based on the energy, exergy, economic and environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1301-1317.
    10. Caulk, Robert A. & Tomac, Ingrid, 2017. "Reuse of abandoned oil and gas wells for geothermal energy production," Renewable Energy, Elsevier, vol. 112(C), pages 388-397.
    11. Martina Tuschl & Tomislav Kurevija, 2023. "Revitalization Modelling of a Mature Oil Field with Bottom-Type Aquifer into Geothermal Resource—Reservoir Engineering and Techno-Economic Challenges," Energies, MDPI, vol. 16(18), pages 1-27, September.
    12. Ji-Hyun Shin & Young-Hum Cho, 2018. "Development of a Variable Water Flow Rate Control Method for the Circulation Pump in a Geothermal Heat Pump System," Energies, MDPI, vol. 11(4), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Sharon W.Y. & Kurnia, Jundika C. & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2019. "Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method," Energy, Elsevier, vol. 188(C).
    2. Gola, Gianluca & Di Sipio, Eloisa & Facci, Marina & Galgaro, Antonio & Manzella, Adele, 2022. "Geothermal deep closed-loop heat exchangers: A novel technical potential evaluation to answer the power and heat demands," Renewable Energy, Elsevier, vol. 198(C), pages 1193-1209.
    3. Ma, Yongfa & Yang, Fengtian & Zhu, Ruijie & Zhou, Xuejun & Liu, Guang & Yuan, Lijuan & Wang, Xu & Dong, Junling & Lü, Honglin & Li, Chang & Zhan, Tao & Su, Bin & Xu, Siqi, 2024. "A numerical study on the sustainability and efficiency of deep coaxial borehole heat exchanger systems in the cold region of northeast China," Renewable Energy, Elsevier, vol. 237(PA).
    4. Isa Kolo & Christopher S. Brown & Gioia Falcone & David Banks, 2023. "Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate," Sustainability, MDPI, vol. 15(5), pages 1-24, February.
    5. Yu, Han & Xu, Tianfu & Yuan, Yilong & Gherardi, Fabrizio & Feng, Bo & Jiang, Zhenjiao & Hu, Zixu, 2021. "Enhanced heat extraction for deep borehole heat exchanger through the jet grouting method using high thermal conductivity material," Renewable Energy, Elsevier, vol. 177(C), pages 1102-1115.
    6. Li, Zhibin & Huang, Wenbo & Chen, Juanwen & Cen, Jiwen & Cao, Wenjiong & Li, Feng & Jiang, Fangming, 2023. "An enhanced super-long gravity heat pipe geothermal system: Conceptual design and numerical study," Energy, Elsevier, vol. 267(C).
    7. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    8. Yanara Tranamil-Maripe & José M. Cardemil & Rodrigo Escobar & Diego Morata & Cristóbal Sarmiento-Laurel, 2022. "Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation," Energies, MDPI, vol. 15(6), pages 1-28, March.
    9. Ji-Hyun Shin & Hyo-Jun Kim & Han-Gyeol Lee & Young-Hum Cho, 2023. "Variable Water Flow Control of Hybrid Geothermal Heat Pump System," Energies, MDPI, vol. 16(17), pages 1-18, August.
    10. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng & Du, Yaxing, 2014. "A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test," Applied Energy, Elsevier, vol. 131(C), pages 211-221.
    11. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    12. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    13. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    14. Fernandez Vazquez, Carlos A.A. & Vansighen, Thomas & Fernandez Fuentes, Miguel H. & Quoilin, Sylvain, 2024. "Energy transition implications for Bolivia. Long-term modelling with short-term assessment of future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Shangyuan Chen & Jinfeng Mao & Xu Han & Chaofeng Li & Liyao Liu, 2016. "Numerical Analysis of the Factors Influencing a Vertical U-Tube Ground Heat Exchanger," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    16. Félix Ruiz-Calvo & Carla Montagud & Antonio Cazorla-Marín & José M. Corberán, 2017. "Development and Experimental Validation of a TRNSYS Dynamic Tool for Design and Energy Optimization of Ground Source Heat Pump Systems," Energies, MDPI, vol. 10(10), pages 1-21, September.
    17. Choi, Hoon Ki & Yoo, Geun Jong & Pak, Jae Hun & Lee, Chang Hee, 2018. "Numerical study on heat transfer characteristics in branch tube type ground heat exchanger," Renewable Energy, Elsevier, vol. 115(C), pages 585-599.
    18. Al Saedi, A.Q. & Sharma, P. & Kabir, C.S., 2021. "A novel cyclical wellbore-fluid circulation strategy for extracting geothermal energy," Energy, Elsevier, vol. 235(C).
    19. Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
    20. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:811-:d:1587222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.