IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p352-d1567273.html
   My bibliography  Save this article

Numerical Modeling and Analysis of Shadow Flicker Using Solar Path Functions for Enhanced Predictive Accuracy

Author

Listed:
  • Nicolai Radke

    (Theory of Hybrid Systems Research Group, RWTH Aachen University, 52062 Aachen, Germany
    These authors contributed equally to this work.)

  • Patrick E. M. De Smet

    (Faculty of Computer Science, University of Vienna, 1010 Vienna, Austria
    These authors contributed equally to this work.)

  • Erika Ábrahám

    (Theory of Hybrid Systems Research Group, RWTH Aachen University, 52062 Aachen, Germany)

Abstract

Shadow flicker caused by wind turbine blades passing through sunlight can significantly affect nearby residential buildings, raising environmental and regulatory concerns in wind farm development. The accurate assessment of shadow flicker exposure is critical for compliance and minimizing community impacts. We present a novel method for accurately determining the exposure of shadow flicker from wind turbines on residential buildings, addressing a key regulatory concern in wind farm planning. Current simulation techniques rely on discrete sampling of solar positions, resulting in potential inaccuracies tied to sampling resolution. Our proposed approach models shadow flicker as a continuous function and applies numerical minimization and numerical root finding to compute the duration of exposure. Our evaluation proves that this method achieves a superior balance between precision and computational efficiency, significantly improving existing techniques.

Suggested Citation

  • Nicolai Radke & Patrick E. M. De Smet & Erika Ábrahám, 2025. "Numerical Modeling and Analysis of Shadow Flicker Using Solar Path Functions for Enhanced Predictive Accuracy," Energies, MDPI, vol. 18(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:352-:d:1567273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    2. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.
    3. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    4. Jiufa Cao & Weijun Zhu & Xinbo Wu & Tongguang Wang & Haoran Xu, 2018. "An Aero-acoustic Noise Distribution Prediction Methodology for Offshore Wind Farms," Energies, MDPI, vol. 12(1), pages 1-16, December.
    5. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    6. Kuichao Ma & Jiaxin Zou & Qingyang Fan & Xiaodong Wang & Wei Zhang & Wei Fan, 2024. "Wind Turbine Wake Regulation Method Coupling Actuator Model and Engineering Wake Model," Energies, MDPI, vol. 17(23), pages 1-19, November.
    7. Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
    8. Göçmen, Tuhfe & Giebel, Gregor, 2016. "Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms," Renewable Energy, Elsevier, vol. 99(C), pages 524-532.
    9. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    10. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Dong, Xinghui & Li, Jia & Gao, Di & Zheng, Kai, 2021. "Wind speed modeling for cascade clusters of wind turbines Part 2: Wind speed reduction and aggregation superposition," Energy, Elsevier, vol. 215(PB).
    12. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    13. Bingzheng Dou & Zhanpei Yang & Michele Guala & Timing Qu & Liping Lei & Pan Zeng, 2020. "Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels," Energies, MDPI, vol. 13(8), pages 1-17, April.
    14. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
    15. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    16. Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Huang, Ming & Ferreira, Carlos & Sciacchitano, Andrea & Scarano, Fulvio, 2022. "Wake scaling of actuator discs in different aspect ratios," Renewable Energy, Elsevier, vol. 183(C), pages 866-876.
    18. Arabgolarcheh, Alireza & Jannesarahmadi, Sahar & Benini, Ernesto, 2022. "Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method," Renewable Energy, Elsevier, vol. 185(C), pages 871-887.
    19. Christy Pérez & Michel Rivero & Mauricio Escalante & Victor Ramirez & Damien Guilbert, 2023. "Influence of Atmospheric Stability on Wind Turbine Energy Production: A Case Study of the Coastal Region of Yucatan," Energies, MDPI, vol. 16(10), pages 1-20, May.
    20. Zhenzhou Shao & Ying Wu & Li Li & Shuang Han & Yongqian Liu, 2019. "Multiple Wind Turbine Wakes Modeling Considering the Faster Wake Recovery in Overlapped Wakes," Energies, MDPI, vol. 12(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:352-:d:1567273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.