IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4778-d1744704.html
   My bibliography  Save this article

Costs of Modernization and Improvement in Energy Efficiency in Polish Buildings in Light of the National Building Renovation Plans

Author

Listed:
  • Edyta Plebankiewicz

    (Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

  • Apolonia Grącka

    (Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

  • Jakub Grącki

    (Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland)

Abstract

Long-term renovation strategies (LTRSs) play a central role in achieving the European Union’s objective of a climate-neutral building stock by 2050. In Poland, the challenge is particularly acute: a majority of the building stock was constructed before 1990 and does not even meet basic thermal performance standards. In view of the state of the buildings in Poland and the assumptions made about obtaining the necessary energy parameters in the coming years, it is necessary to undertake thermal modernization measures. The purpose of the paper is to assess the economic efficiency of the variants of modernization of building stock in Poland, taking into account the constraints related to improving energy efficiency. Additionally, the article also points out the problem of discrepancies resulting from climate zones that may significantly affect the final primary energy results (on average, 5–15%). In order to achieve the objectives, the paper focuses on the analysis of energy sources. According to the overall score in the analytic hierarchy process (AHP) method, the best solutions, with a global priority of 0.46, are renewable energy sources (RESs). The evaluation of selected fuel types in the 2055 perspective, using the technique for order preference by similarity to ideal solution (TOPSIS) method, indicate favorable environmental performance by sources based on electricity, i.e., air-source heat pumps, ground-source heat pumps, and electric heating, which achieved the highest relative closeness to the ideal solution. Heat pump systems can reduce energy consumption by 26–41% depending on the building and heat pump type. The final analysis in the paper concerns different options for thermal modernization of a model single-family house, taking into account different energy sources and stages of thermal modernization work. The scenario involves the simultaneous implementation of all renovation measures at an early stage, resulting in the lowest investment burden over time and the most favorable economic performance.

Suggested Citation

  • Edyta Plebankiewicz & Apolonia Grącka & Jakub Grącki, 2025. "Costs of Modernization and Improvement in Energy Efficiency in Polish Buildings in Light of the National Building Renovation Plans," Energies, MDPI, vol. 18(17), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4778-:d:1744704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4778/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4778/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis," Applied Energy, Elsevier, vol. 321(C).
    2. Effrosyni Giama & Georgios Chantzis & Serafim Kontos & Stavros Keppas & Anastasia Poupkou & Natalia Liora & Dimitrios Melas, 2022. "Building Energy Simulations Based on Weather Forecast Meteorological Model: The Case of an Institutional Building in Greece," Energies, MDPI, vol. 16(1), pages 1-15, December.
    3. Aitana Sáez-de-Guinoa & David Zambrana-Vasquez & Víctor Fernández & Carmen Bartolomé, 2022. "Circular Economy in the European Construction Sector: A Review of Strategies for Implementation in Building Renovation," Energies, MDPI, vol. 15(13), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.
    2. Mujammil Asdhiyoga Rahmanta & Rahmat Adiprasetya Al Hasibi & Handrea Bernando Tambunan & Ruly & Agussalim Syamsuddin & Indra Ardhanayudha Aditya & Benny Susanto, 2024. "Towards a Net Zero-Emission Electricity Generation System by Optimizing Renewable Energy Sources and Nuclear Power Plant," Energies, MDPI, vol. 17(8), pages 1-22, April.
    3. Pan, Zhongjie & Liu, Jia & Wu, Huijun & Luo, Diqian & Huang, Jialong, 2025. "Theoretical-experimental-simulation research on thermal-daylight-electrical performance of PV glazing in high-rise office building in the Greater Bay Area," Applied Energy, Elsevier, vol. 378(PA).
    4. Konstantinos Sofias & Zoe Kanetaki & Constantinos Stergiou & Sébastien Jacques, 2023. "Combining CAD Modeling and Simulation of Energy Performance Data for the Retrofit of Public Buildings," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    5. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    6. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    7. Mari-Isabella Stan, 2022. "An Analysis of the Municipal Waste Management of Romania and Bulgaria in the European Context," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 166-174, September.
    8. Barone, G. & Buonomano, A. & Cipolla, G. & Forzano, C. & Giuzio, G.F. & Russo, G., 2024. "Designing aggregation criteria for end-users integration in energy communities: Energy and economic optimisation based on hybrid neural networks models," Applied Energy, Elsevier, vol. 371(C).
    9. Chen, Xianqing & Yang, Lingfang & Dong, Wei & Yang, Qiang, 2024. "Net-zero carbon emission oriented Bi-level optimal capacity planning of integrated energy system considering carbon capture and hydrogen facilities," Renewable Energy, Elsevier, vol. 237(PB).
    10. Shin, Dong-Youn & Shin, Woo-Gyun & Hwang, Hye-Mi & Kang, Gi-Hwan, 2023. "Grid-type LED media façade with reflective walls for building-integrated photovoltaics with virtually no shading loss," Applied Energy, Elsevier, vol. 332(C).
    11. Wankouo Ngouleu, Clint Ameri & Koholé, Yemeli Wenceslas & Fohagui, Fodoup Cyrille Vincelas & Tchuen, Ghislain, 2025. "Optimum design and scheduling strategy of an off-grid hybrid photovoltaic-wind-diesel system with an electrochemical, mechanical, chemical and thermal energy storage systems: A comparative scrutiny," Applied Energy, Elsevier, vol. 377(PC).
    12. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    13. Alharbi, Talal & Abo-Elyousr, Farag K. & Abdelshafy, Alaaeldin M., 2024. "Efficient Coordination of Renewable Energy Resources through Optimal Reversible Pumped Hydro-Storage Integration for Autonomous Microgrid Economic Operation," Energy, Elsevier, vol. 304(C).
    14. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    15. Liu, Jia & Ma, Tao & Wu, Huijun & Yang, Hongxing, 2023. "Study on optimum energy fuel mix for urban cities integrated with pumped hydro storage and green vehicles," Applied Energy, Elsevier, vol. 331(C).
    16. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    17. Wang, Haifeng & Yuan, Lingling & Wang, Weijun & Song, Minghao, 2024. "Distributionally robust optimization for pumped storage power station capacity expanding based on underwater hydrogen storage introduction," Energy, Elsevier, vol. 310(C).
    18. Jin-Li Hu & Min-Yueh Chuang, 2023. "The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy," Energies, MDPI, vol. 16(17), pages 1-16, August.
    19. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
    20. Jinhwa Jeong & Dongkyu Lee & Young Tae Chae, 2023. "A Novel Approach for Day-Ahead Hourly Building-Integrated Photovoltaic Power Prediction by Using Feature Engineering and Simple Weather Forecasting Service," Energies, MDPI, vol. 16(22), pages 1-21, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4778-:d:1744704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.