IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v332y2023ics0306261922018104.html
   My bibliography  Save this article

Grid-type LED media façade with reflective walls for building-integrated photovoltaics with virtually no shading loss

Author

Listed:
  • Shin, Dong-Youn
  • Shin, Woo-Gyun
  • Hwang, Hye-Mi
  • Kang, Gi-Hwan

Abstract

Although anthropogenic climate change has demanded the development and use of building-integrated photovoltaics in zero energy building design, their poor aesthetic value has hindered their public acceptance. Accordingly, a grid-type LED display with reflective walls is herein proposed to bestow not only an aesthetic value to plain photovoltaic modules, but also an informative function as a media façade. Its lightweight, modular design enables it to be detachable and repairable. Upright flexible printed circuit boards embedded in the grid walls allow the use of wide copper electrodes and dual in-line package LEDs while casting virtually no shadows, leading to low resistive loss, excellent heat dissipation, and high luminance. The grid design exhibits a shading loss of only −3.67 %, which contributes to its superiority over conventional plane-type LED displays with a shading loss of −22.59 %. Reflective walls redirecting sunlight at solar incidence angles towards the photovoltaic modules lead to an average relative maximum power of 87.50 %, which is far higher than the 76.47 % achieved with opaque walls. The effective energy production simulations suggest that the grid-type LED displays can be run in a self-standing mode for up to 21.74 h per day. The presented grid-type LED display will contribute to the fast and wide adoption of building-integrated photovoltaics with increased public acceptance.

Suggested Citation

  • Shin, Dong-Youn & Shin, Woo-Gyun & Hwang, Hye-Mi & Kang, Gi-Hwan, 2023. "Grid-type LED media façade with reflective walls for building-integrated photovoltaics with virtually no shading loss," Applied Energy, Elsevier, vol. 332(C).
  • Handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922018104
    DOI: 10.1016/j.apenergy.2022.120553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922018104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    2. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    3. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
    4. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    5. Bae, Sangmu & Nam, Yujin, 2022. "Feasibility analysis for an integrated system using photovoltaic-thermal and ground source heat pump based on real-scale experiment," Renewable Energy, Elsevier, vol. 185(C), pages 1152-1166.
    6. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    7. Dar, Arslan Salim & Armengol Barcos, Guillem & Porté-Agel, Fernando, 2022. "An experimental investigation of a roof-mounted horizontal-axis wind turbine in an idealized urban environment," Renewable Energy, Elsevier, vol. 193(C), pages 1049-1061.
    8. Christophe Ballif & Laure-Emmanuelle Perret-Aebi & Sophie Lufkin & Emmanuel Rey, 2018. "Integrated thinking for photovoltaics in buildings," Nature Energy, Nature, vol. 3(6), pages 438-442, June.
    9. Hadavinia, Homan & Singh, Harjit, 2019. "Modelling and experimental analysis of low concentrating solar panels for use in building integrated and applied photovoltaic (BIPV/BAPV) systems," Renewable Energy, Elsevier, vol. 139(C), pages 815-829.
    10. Tsai, Chin-Yi & Tsai, Chin-Yao, 2020. "See-through, light-through, and color modules for large-area tandem amorphous/microcrystalline silicon thin-film solar modules: Technology development and practical considerations for building-integra," Renewable Energy, Elsevier, vol. 145(C), pages 2637-2646.
    11. Moreno, A. & Chemisana, D. & Fernández, E.F., 2021. "Hybrid high-concentration photovoltaic-thermal solar systems for building applications," Applied Energy, Elsevier, vol. 304(C).
    12. Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
    13. Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
    14. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis," Applied Energy, Elsevier, vol. 321(C).
    15. Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2019. "Colour properties and glazing factors evaluation of multicrystalline based semi-transparent Photovoltaic-vacuum glazing for BIPV application," Renewable Energy, Elsevier, vol. 131(C), pages 730-736.
    16. Abokersh, Mohamed Hany & Gangwar, Sachin & Spiekman, Marleen & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2021. "Sustainability insights on emerging solar district heating technologies to boost the nearly zero energy building concept," Renewable Energy, Elsevier, vol. 180(C), pages 893-913.
    17. Marszal, Anna Joanna & Heiselberg, Per & Lund Jensen, Rasmus & Nørgaard, Jesper, 2012. "On-site or off-site renewable energy supply options? Life cycle cost analysis of a Net Zero Energy Building in Denmark," Renewable Energy, Elsevier, vol. 44(C), pages 154-165.
    18. Kneifel, Joshua & Webb, David, 2016. "Predicting energy performance of a net-zero energy building: A statistical approach," Applied Energy, Elsevier, vol. 178(C), pages 468-483.
    19. Ng, Poh Khai & Mithraratne, Nalanie, 2014. "Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 736-745.
    20. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    4. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    5. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Uddin, Md Muin & Ji, Jie & Wang, Chuyao & Zhang, Chengyan, 2023. "Building energy conservation potentials of semi-transparent CdTe integrated photovoltaic window systems in Bangladesh context," Renewable Energy, Elsevier, vol. 207(C), pages 512-530.
    7. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Khencha Khadidja & Biara Ratiba Wided & Belmili Hocine, 2020. "Techno-economic study of BIPV in typical Sahara region in Algeria," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 9(1), pages 27-57, September.
    9. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    10. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    11. Zheng, Senlin & Qiu, Zining & He, Caiwei & Wang, Xianling & Wang, Xupeng & Wang, Zhangyuan & Zhao, Xudong & Shittu, Samson, 2022. "Research on heat transfer mechanism and performance of a novel adaptive enclosure structure based on micro-channel heat pipe," Energy, Elsevier, vol. 254(PB).
    12. Kim, Chungil & Jeong, Myeong Sang & Ko, Jaehwan & Ko, MyeongGeun & Kang, Min Gu & Song, Hyung-Jun, 2021. "Inhomogeneous rear reflector induced hot-spot risk and power loss in building-integrated bifacial c-Si photovoltaic modules," Renewable Energy, Elsevier, vol. 163(C), pages 825-835.
    13. Shaohang Shi & Jingfen Sun & Mengjia Liu & Xinxing Chen & Weizhi Gao & Yehao Song, 2022. "Energy-Saving Potential Comparison of Different Photovoltaic Integrated Shading Devices (PVSDs) for Single-Story and Multi-Story Buildings," Energies, MDPI, vol. 15(23), pages 1-23, December.
    14. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    15. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    16. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2023. "Investigation on overall energy performance of a novel multi-functional PV/T window," Applied Energy, Elsevier, vol. 352(C).
    17. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    18. Lamnatou, Chr. & Chemisana, D. & Mateus, R. & Almeida, M.G. & Silva, S.M., 2015. "Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems," Renewable Energy, Elsevier, vol. 75(C), pages 833-846.
    19. Kong, Minjin & Hong, Taehoon & Ji, Changyoon & Kang, Hyuna & Lee, Minhyun, 2020. "Development of building driven-energy payback time for energy transition of building with renewable energy systems," Applied Energy, Elsevier, vol. 271(C).
    20. Xuan, Qingdong & Li, Guiqiang & Jiang, Bin & Zhao, Xudong & Ji, Jie & Pei, Gang, 2021. "Overall outdoor experiments on daylighting performance of a self-regulating photovoltaic/daylighting system in different seasons," Applied Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922018104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.