IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4459-d1729896.html
   My bibliography  Save this article

Review of Digital Twin Technology in Low-Voltage Distribution Area and the Implementation Path Based on the ‘6C’ Development Goals

Author

Listed:
  • Yuxiang Peng

    (Guangxi Power Grid Co., Ltd., Nanning 530004, China)

  • Feng Zhao

    (College of Electrical and Information Engineering, Hunan University, Changsha 410012, China)

  • Ke Zhou

    (Guangxi Power Grid Co., Ltd., Nanning 530004, China)

  • Xiaoyong Yu

    (Guangxi Power Grid Co., Ltd., Nanning 530004, China)

  • Qingren Jin

    (Guangxi Power Grid Co., Ltd., Nanning 530004, China)

  • Ruien Li

    (College of Electrical and Information Engineering, Hunan University, Changsha 410012, China)

  • Zhikang Shuai

    (College of Electrical and Information Engineering, Hunan University, Changsha 410012, China)

Abstract

Low-voltage distribution area is the “last kilometer” connecting the distribution network and users, and the traditional distribution system is difficult to digitally manage in the low-voltage area, resulting in untimely and imprecise handling of voltage overruns, short-circuit outages, and other abnormal problems. With the deployment of smart meters, new sensors, smart gateways, and other devices in distribution areas, digital intelligent monitoring and management based on digital twins in LV distribution areas has gradually become the focus of distribution network research. In view of the profound changes that are taking place in the low-voltage distribution area, this paper first summarizes the characteristics and shortcomings of the existing digital twin research in the low-voltage distribution area, then puts forward the ‘6C’ development goals for the digital transformation of the low-voltage distribution area, introduces the practice work of Guangxi Power Grid Corporation around the ‘6C’ development goals in the low-voltage distribution area. Finally, the future research work of the ‘6C’ development goals for the digital transformation of the low-voltage distribution area is promising.

Suggested Citation

  • Yuxiang Peng & Feng Zhao & Ke Zhou & Xiaoyong Yu & Qingren Jin & Ruien Li & Zhikang Shuai, 2025. "Review of Digital Twin Technology in Low-Voltage Distribution Area and the Implementation Path Based on the ‘6C’ Development Goals," Energies, MDPI, vol. 18(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4459-:d:1729896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaitao Sun & Jiancun Liu & Chao Qin & Xi Chen, 2025. "A Method for Optimal Allocation of Distribution Network Resources Considering Power–Communication Network Coupling," Energies, MDPI, vol. 18(3), pages 1-18, January.
    2. Gheorghe Grigoras & Bogdan-Constantin Neagu, 2019. "Smart Meter Data-Based Three-Stage Algorithm to Calculate Power and Energy Losses in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(15), pages 1-27, August.
    3. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    4. Sifat, Md. Mhamud Hussen & Choudhury, Safwat Mukarrama & Das, Sajal K. & Pota, Hemanshu & Yang, Fuwen, 2025. "Novel abstractions and experimental validation for digital twin microgrid design: Lab scale studies and large scale proposals," Applied Energy, Elsevier, vol. 377(PC).
    5. Edward J. Smith & Duane A. Robinson & Sean Elphick, 2024. "DER Control and Management Strategies for Distribution Networks: A Review of Current Practices and Future Directions," Energies, MDPI, vol. 17(11), pages 1-40, May.
    6. Lazher Mejdi & Faten Kardous & Khaled Grayaa, 2022. "Impact Analysis and Optimization of EV Charging Loads on the LV Grid: A Case Study of Workplace Parking in Tunisia," Energies, MDPI, vol. 15(19), pages 1-18, September.
    7. Francinei L. Vieira & Pedro H. M. Santos & José M. Carvalho Filho & Roberto C. Leborgne & Marino P. Leite, 2019. "A Voltage-Based Approach for Series High Impedance Fault Detection and Location in Distribution Systems Using Smart Meters," Energies, MDPI, vol. 12(15), pages 1-16, August.
    8. Dokur, Emrah & Erdogan, Nuh & Sengor, Ibrahim & Yuzgec, Ugur & Hayes, Barry P., 2025. "Near real-time machine learning framework in distribution networks with low-carbon technologies using smart meter data," Applied Energy, Elsevier, vol. 384(C).
    9. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    10. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
    11. Alberto Sendin & Iñigo Berganza & Aitor Arzuaga & Xabier Osorio & Iker Urrutia & Pablo Angueira, 2013. "Enhanced Operation of Electricity Distribution Grids Through Smart Metering PLC Network Monitoring, Analysis and Grid Conditioning," Energies, MDPI, vol. 6(1), pages 1-18, January.
    12. Paweł Kelm & Irena Wasiak & Rozmysław Mieński & Andrzej Wędzik & Michał Szypowski & Ryszard Pawełek & Krzysztof Szaniawski, 2022. "Hardware-in-the-Loop Validation of an Energy Management System for LV Distribution Networks with Renewable Energy Sources," Energies, MDPI, vol. 15(7), pages 1-18, April.
    13. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    14. Paolo Sospiro & Lohith Amarnath & Vincenzo Di Nardo & Giacomo Talluri & Foad H. Gandoman, 2021. "Smart Grid in China, EU, and the US: State of Implementation," Energies, MDPI, vol. 14(18), pages 1-16, September.
    15. Hossein Lotfi & Mohammad Ebrahim Hajiabadi & Hossein Parsadust, 2024. "Power Distribution Network Reconfiguration Techniques: A Thorough Review," Sustainability, MDPI, vol. 16(23), pages 1-33, November.
    16. Mahmoud Shaban & Mohammed F. Alsharekh, 2022. "Design of a Smart Distribution Panelboard Using IoT Connectivity and Machine Learning Techniques," Energies, MDPI, vol. 15(10), pages 1-17, May.
    17. Nikoleta Andreadou & Miguel Olariaga Guardiola & Gianluca Fulli, 2016. "Telecommunication Technologies for Smart Grid Projects with Focus on Smart Metering Applications," Energies, MDPI, vol. 9(5), pages 1-35, May.
    18. Römer, Benedikt & Reichhart, Philipp & Kranz, Johann & Picot, Arnold, 2012. "The role of smart metering and decentralized electricity storage for smart grids: The importance of positive externalities," Energy Policy, Elsevier, vol. 50(C), pages 486-495.
    19. Poghosyan, Anush & Greetham, Danica Vukadinović & Haben, Stephen & Lee, Tamsin, 2015. "Long term individual load forecast under different electrical vehicles uptake scenarios," Applied Energy, Elsevier, vol. 157(C), pages 699-709.
    20. Ma, Chenjie & Menke, Jan-Hendrik & Dasenbrock, Johannes & Braun, Martin & Haslbeck, Matthias & Schmid, Karl-Heinz, 2019. "Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation," Applied Energy, Elsevier, vol. 256(C).
    21. Villar-Rodriguez, Esther & Del Ser, Javier & Oregi, Izaskun & Bilbao, Miren Nekane & Gil-Lopez, Sergio, 2017. "Detection of non-technical losses in smart meter data based on load curve profiling and time series analysis," Energy, Elsevier, vol. 137(C), pages 118-128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chisom E. Ogbogu & Jesse Thornburg & Samuel O. Okozi, 2025. "Smart Grid Fault Mitigation and Cybersecurity with Wide-Area Measurement Systems: A Review," Energies, MDPI, vol. 18(4), pages 1-26, February.
    2. Mario Sanz & José Ignacio Moreno & Gregorio López & Javier Matanza & Julio Berrocal, 2021. "Web-Based Toolkit for Performance Simulation and Analysis of Power Line Communication Networks," Energies, MDPI, vol. 14(20), pages 1-25, October.
    3. Giovanni Artale & Giuseppe Caravello & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Salvatore Guaiana & Ninh Nguyen Quang & Marco Palmeri & Nicola Panzavecchia & Giovanni Tinè, 2020. "A Virtual Tool for Load Flow Analysis in a Micro-Grid," Energies, MDPI, vol. 13(12), pages 1-26, June.
    4. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    5. Sung-Won Park & Sung-Yong Son, 2017. "Cost Analysis for a Hybrid Advanced Metering Infrastructure in Korea," Energies, MDPI, vol. 10(9), pages 1-18, September.
    6. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    7. Wang, Yipeng & Yu, Tao & Luo, Qingquan & Liu, Xipeng & Wang, Ziyao & Wu, Yufeng & Pan, Zhenning, 2024. "Two-stage generalizable approach for electricity theft detection in new regions," Applied Energy, Elsevier, vol. 365(C).
    8. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    9. Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
    10. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    11. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    12. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    13. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    14. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    15. Muhammed Cavus & Huseyin Ayan & Margaret Bell & Dilum Dissanayake, 2025. "Advances in Energy Storage, AI Optimisation, and Cybersecurity for Electric Vehicle Grid Integration," Energies, MDPI, vol. 18(17), pages 1-33, August.
    16. Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
    17. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    18. Marques, Vítor & Costa, Paulo Moisés & Bento, Nuno, 2022. "Greater than the sum: On regulating innovation in electricity distribution networks with externalities," Utilities Policy, Elsevier, vol. 79(C).
    19. Sergiu-Mihai Hategan & Nicoleta Stefu & Marius Paulescu, 2023. "An Ensemble Approach for Intra-Hour Forecasting of Solar Resource," Energies, MDPI, vol. 16(18), pages 1-12, September.
    20. Andreea Loredana Bîrgovan & Elena Simina Lakatos & Andrea Szilagyi & Lucian Ionel Cioca & Roxana Lavinia Pacurariu & George Ciobanu & Elena Cristina Rada, 2022. "How Should We Measure? A Review of Circular Cities Indicators," IJERPH, MDPI, vol. 19(9), pages 1-16, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4459-:d:1729896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.