IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6475-d652948.html
   My bibliography  Save this article

Web-Based Toolkit for Performance Simulation and Analysis of Power Line Communication Networks

Author

Listed:
  • Mario Sanz

    (ETSI de Telecomunicación, Universidad Politécnica de Madrid (UPM), Avda. Complutense 30, 28040 Madrid, Spain)

  • José Ignacio Moreno

    (ETSI de Telecomunicación, Universidad Politécnica de Madrid (UPM), Avda. Complutense 30, 28040 Madrid, Spain)

  • Gregorio López

    (Institute for Research in Technology, ICAI, Comillas Pontifical University, Calle Alberto Aguilera 25, 28015 Madrid, Spain)

  • Javier Matanza

    (Institute for Research in Technology, ICAI, Comillas Pontifical University, Calle Alberto Aguilera 25, 28015 Madrid, Spain)

  • Julio Berrocal

    (ETSI de Telecomunicación, Universidad Politécnica de Madrid (UPM), Avda. Complutense 30, 28040 Madrid, Spain)

Abstract

AMIs (Advanced Metering Infrastructures) present an important role in Smart City environments, especially from the point of view of distribution and customers, offering control and monitoring capabilities. The use of PLC (Power Line Communication) technology offers a wide range of advantages in AMI, including not needing to deploy an additional communication infrastructure. However, the electrical network was not initially designed for communications, as these networks pose problems depending on the connected loads, such as network impedance variation, frequency selectivity or noise. For this reason, the use of simulators is proposed to facilitate the deployments based on PLC networks, and analysis and diagnosis tools for the identification of problems in operating networks are also required. This paper presents a toolkit for evaluating and analyzing the performance of PLC networks. This toolkit is composed of SimPRIME, a simulator for the evaluation of NB-PLC PRIME (PoweR line Intelligent Metering Evolution) networks’ performance; SimBPL, a simulator for the evaluation of MV-BPL (Broadband Power Line over Medium Voltage) cells’ performance; and PRIME Analytics, a forensics tool that allows diagnosis of communication problems in PRIME operational networks based on traffic traces. The toolkit has been developed throughout several research projects in close collaboration with DSOs (Distribution System Operators) and equipment manufacturers, so they provide solutions to actual problems of these industry key players and have been adapted to facilitate their use. As a result, the tools are accessible through web applications to increase their usability, portability, and scalability. These applications represent the first steps in offering PLC simulation and analysis as a service that could benefit the research community, academia, and industry.

Suggested Citation

  • Mario Sanz & José Ignacio Moreno & Gregorio López & Javier Matanza & Julio Berrocal, 2021. "Web-Based Toolkit for Performance Simulation and Analysis of Power Line Communication Networks," Energies, MDPI, vol. 14(20), pages 1-25, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6475-:d:652948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikoleta Andreadou & Miguel Olariaga Guardiola & Gianluca Fulli, 2016. "Telecommunication Technologies for Smart Grid Projects with Focus on Smart Metering Applications," Energies, MDPI, vol. 9(5), pages 1-35, May.
    2. Alberto Sendin & Iñigo Berganza & Aitor Arzuaga & Xabier Osorio & Iker Urrutia & Pablo Angueira, 2013. "Enhanced Operation of Electricity Distribution Grids Through Smart Metering PLC Network Monitoring, Analysis and Grid Conditioning," Energies, MDPI, vol. 6(1), pages 1-18, January.
    3. Alberto Sendin & Ivan Peña & Pablo Angueira, 2014. "Strategies for Power Line Communications Smart Metering Network Deployment," Energies, MDPI, vol. 7(4), pages 1-44, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Sendin & Txetxu Arzuaga & Iker Urrutia & Iñigo Berganza & Ainara Fernandez & Laura Marron & Asier Llano & Aitor Arzuaga, 2015. "Adaptation of Powerline Communications-Based Smart Metering Deployments to the Requirements of Smart Grids," Energies, MDPI, vol. 8(12), pages 1-27, November.
    2. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    3. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    4. Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie, 2016. "Broadband PLC for Clustered Advanced Metering Infrastructure (AMI) Architecture," Energies, MDPI, vol. 9(7), pages 1-19, July.
    5. Giovanni Artale & Giuseppe Caravello & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Salvatore Guaiana & Ninh Nguyen Quang & Marco Palmeri & Nicola Panzavecchia & Giovanni Tinè, 2020. "A Virtual Tool for Load Flow Analysis in a Micro-Grid," Energies, MDPI, vol. 13(12), pages 1-26, June.
    6. Thomas F. Landinger & Guenter Schwarzberger & Guenter Hofer & Matthias Rose & Andreas Jossen, 2021. "Power Line Communications for Automotive High Voltage Battery Systems: Channel Modeling and Coexistence Study with Battery Monitoring," Energies, MDPI, vol. 14(7), pages 1-26, March.
    7. Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    8. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    9. Javier Hernandez Fernandez & Aymen Omri & Roberto Di Pietro, 2022. "PLC Physical Layer Link Identification with Imperfect Channel State Information," Energies, MDPI, vol. 15(16), pages 1-19, August.
    10. Venkata Bandi & Tiia Sahrakorpi & Jukka V. Paatero & Risto Lahdelma, 2023. "Unveiling the Decision-Making Dilemmas in Mini-Grids: The Intricate Case of Smart Meters," Energies, MDPI, vol. 16(17), pages 1-22, August.
    11. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    12. Silvia Vitiello & Nikoleta Andreadou & Mircea Ardelean & Gianluca Fulli, 2022. "Smart Metering Roll-Out in Europe: Where Do We Stand? Cost Benefit Analyses in the Clean Energy Package and Research Trends in the Green Deal," Energies, MDPI, vol. 15(7), pages 1-20, March.
    13. Yazhou Jiang & Chen-Ching Liu & Yin Xu, 2016. "Smart Distribution Systems," Energies, MDPI, vol. 9(4), pages 1-20, April.
    14. Rikin Tailor & Zsolt Čonka & Michal Kolcun & Ľubomír Beňa, 2021. "Electrical Energy Flow Algorithm for Household, Street and Battery Charging in Smart Street Development," Energies, MDPI, vol. 14(13), pages 1-34, June.
    15. Guopeng Song & Hao Chen & Bo Guo, 2014. "A Layered Fault Tree Model for Reliability Evaluation of Smart Grids," Energies, MDPI, vol. 7(8), pages 1-23, July.
    16. Alessandro Pitì & Giacomo Verticale & Cristina Rottondi & Antonio Capone & Luca Lo Schiavo, 2017. "The Role of Smart Meters in Enabling Real-Time Energy Services for Households: The Italian Case," Energies, MDPI, vol. 10(2), pages 1-25, February.
    17. Sung-Won Park & Sung-Yong Son, 2017. "Cost Analysis for a Hybrid Advanced Metering Infrastructure in Korea," Energies, MDPI, vol. 10(9), pages 1-18, September.
    18. Payam Hanafizadeh & Parastou Hatami & Morteza Analoui & Amir Albadvi, 2021. "Business model innovation driven by the internet of things technology, in internet service providers’ business context," Information Systems and e-Business Management, Springer, vol. 19(4), pages 1175-1243, December.
    19. Jiefeng Hu, 2017. "Coordinated Control and Fault Protection Investigation of a Renewable Energy Integration Facility with Solar PVs and a Micro-Turbine," Energies, MDPI, vol. 10(4), pages 1-13, March.
    20. Nikoleta Andreadou & Evangelos Kotsakis & Marcelo Masera, 2018. "Smart Meter Traffic in a Real LV Distribution Network," Energies, MDPI, vol. 11(5), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6475-:d:652948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.