IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p569-d74406.html
   My bibliography  Save this article

Broadband PLC for Clustered Advanced Metering Infrastructure (AMI) Architecture

Author

Listed:
  • Augustine Ikpehai

    (School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK)

  • Bamidele Adebisi

    (School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK)

  • Khaled M. Rabie

    (School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK)

Abstract

Advanced metering infrastructure (AMI) subsystems monitor and control energy distribution through exchange of information between smart meters and utility networks. A key challenge is how to select a cost-effective communication system without compromising the performance of the applications. Current communication technologies were developed for conventional data networks with different requirements. It is therefore necessary to investigate how much of existing communication technologies can be retrofitted into the new energy infrastructure to cost-effectively deliver acceptable level of service. This paper investigates broadband power line communications (BPLC) as a backhaul solution in AMI. By applying the disparate traffic characteristics of selected AMI applications, the network performance is evaluated. This study also examines the communication network response to changes in application configurations in terms of packet sizes. In each case, the network is stress-tested and performance is assessed against acceptable thresholds documented in the literature. Results show that, like every other communication technology, BPLC has certain limitations; however, with some modifications in the network topology, it indeed can fulfill most AMI traffic requirements for flexible and time-bounded applications. These opportunities, if tapped, can significantly improve fiscal and operational efficiencies in AMI services. Simulation results also reveal that BPLC as a backhaul can support flat and clustered AMI structures with cluster size ranging from 1 to 150 smart meters.

Suggested Citation

  • Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie, 2016. "Broadband PLC for Clustered Advanced Metering Infrastructure (AMI) Architecture," Energies, MDPI, vol. 9(7), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:569-:d:74406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Sendin & Txetxu Arzuaga & Iker Urrutia & Iñigo Berganza & Ainara Fernandez & Laura Marron & Asier Llano & Aitor Arzuaga, 2015. "Adaptation of Powerline Communications-Based Smart Metering Deployments to the Requirements of Smart Grids," Energies, MDPI, vol. 8(12), pages 1-27, November.
    2. Alberto Sendin & Ivan Peña & Pablo Angueira, 2014. "Strategies for Power Line Communications Smart Metering Network Deployment," Energies, MDPI, vol. 7(4), pages 1-44, April.
    3. Gregorio López & Pedro Moura & José Ignacio Moreno & José Manuel Camacho, 2014. "Multi-Faceted Assessment of a Wireless Communications Infrastructure for the Green Neighborhoods of the Smart Grid," Energies, MDPI, vol. 7(5), pages 1-31, May.
    4. Alberto Sendin & Iñigo Berganza & Aitor Arzuaga & Xabier Osorio & Iker Urrutia & Pablo Angueira, 2013. "Enhanced Operation of Electricity Distribution Grids Through Smart Metering PLC Network Monitoring, Analysis and Grid Conditioning," Energies, MDPI, vol. 6(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosna Khajeh & Hannu Laaksonen & Amin Shokri Gazafroudi & Miadreza Shafie-khah, 2019. "Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review," Energies, MDPI, vol. 13(1), pages 1-19, December.
    2. Grzegorz Debita & Przemysław Falkowski-Gilski & Marcin Habrych & Grzegorz Wiśniewski & Bogdan Miedziński & Przemysław Jedlikowski & Agnieszka Waniewska & Jan Wandzio & Bartosz Polnik, 2020. "BPL-PLC Voice Communication System for the Oil and Mining Industry," Energies, MDPI, vol. 13(18), pages 1-19, September.
    3. Olamide Jogunola & Augustine Ikpehai & Kelvin Anoh & Bamidele Adebisi & Mohammad Hammoudeh & Sung-Yong Son & Georgina Harris, 2017. "State-Of-The-Art and Prospects for Peer-To-Peer Transaction-Based Energy System," Energies, MDPI, vol. 10(12), pages 1-28, December.
    4. Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
    5. Ying-Ren Chien & Hao-Chun Yu, 2019. "Mitigating Impulsive Noise for Wavelet-OFDM Powerline Communication," Energies, MDPI, vol. 12(8), pages 1-13, April.
    6. Lesek Franek & Petr Fiedler, 2017. "A Multiconductor Model of Power Line Communication in Medium-Voltage Lines," Energies, MDPI, vol. 10(6), pages 1-16, June.
    7. Gregorio López & José Ignacio Moreno & Eutimio Sánchez & Cristina Martínez & Fernando Martín, 2017. "Noise Sources, Effects and Countermeasures in Narrowband Power-Line Communications Networks: A Practical Approach," Energies, MDPI, vol. 10(8), pages 1-42, August.
    8. Antonio E. Saldaña-González & Andreas Sumper & Mònica Aragüés-Peñalba & Miha Smolnikar, 2020. "Advanced Distribution Measurement Technologies and Data Applications for Smart Grids: A Review," Energies, MDPI, vol. 13(14), pages 1-34, July.
    9. Yakubu Tsado & Kelum A. A. Gamage & Bamidele Adebisi & David Lund & Khaled M. Rabie & Augustine Ikpehai, 2017. "Improving the Reliability of Optimised Link State Routing in a Smart Grid Neighbour Area Network based Wireless Mesh Network Using Multiple Metrics," Energies, MDPI, vol. 10(3), pages 1-23, February.
    10. Olamide Jogunola & Augustine Ikpehai & Kelvin Anoh & Bamidele Adebisi & Mohammad Hammoudeh & Haris Gacanin & Georgina Harris, 2017. "Comparative Analysis of P2P Architectures for Energy Trading and Sharing," Energies, MDPI, vol. 11(1), pages 1-20, December.
    11. Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie & Russell Haggar & Mike Baker, 2016. "Experimental Study of 6LoPLC for Home Energy Management Systems," Energies, MDPI, vol. 9(12), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Sanz & José Ignacio Moreno & Gregorio López & Javier Matanza & Julio Berrocal, 2021. "Web-Based Toolkit for Performance Simulation and Analysis of Power Line Communication Networks," Energies, MDPI, vol. 14(20), pages 1-25, October.
    2. Yazhou Jiang & Chen-Ching Liu & Yin Xu, 2016. "Smart Distribution Systems," Energies, MDPI, vol. 9(4), pages 1-20, April.
    3. Alberto Sendin & Txetxu Arzuaga & Iker Urrutia & Iñigo Berganza & Ainara Fernandez & Laura Marron & Asier Llano & Aitor Arzuaga, 2015. "Adaptation of Powerline Communications-Based Smart Metering Deployments to the Requirements of Smart Grids," Energies, MDPI, vol. 8(12), pages 1-27, November.
    4. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    5. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    6. Thomas F. Landinger & Guenter Schwarzberger & Guenter Hofer & Matthias Rose & Andreas Jossen, 2021. "Power Line Communications for Automotive High Voltage Battery Systems: Channel Modeling and Coexistence Study with Battery Monitoring," Energies, MDPI, vol. 14(7), pages 1-26, March.
    7. Javier Hernandez Fernandez & Aymen Omri & Roberto Di Pietro, 2022. "PLC Physical Layer Link Identification with Imperfect Channel State Information," Energies, MDPI, vol. 15(16), pages 1-19, August.
    8. Hyun Baek & Sun-Kyoung Park, 2015. "Sustainable Development Plan for Korea through Expansion of Green IT: Policy Issues for the Effective Utilization of Big Data," Sustainability, MDPI, vol. 7(2), pages 1-21, January.
    9. Zeljko Martinovic & Martin Dadic & Branimir Ivsic & Roman Malaric, 2019. "An Adiabatic Coaxial Line for Microcalorimeter Power Measurements in Wireless Communication for Smart Grid," Energies, MDPI, vol. 12(21), pages 1-18, November.
    10. Guopeng Song & Hao Chen & Bo Guo, 2014. "A Layered Fault Tree Model for Reliability Evaluation of Smart Grids," Energies, MDPI, vol. 7(8), pages 1-23, July.
    11. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    12. Noelia Uribe-Pérez & Itziar Angulo & David De la Vega & Txetxu Arzuaga & Igor Fernández & Amaia Arrinda, 2017. "Smart Grid Applications for a Practical Implementation of IP over Narrowband Power Line Communications," Energies, MDPI, vol. 10(11), pages 1-16, November.
    13. Ricardo Vazquez & Hortensia Amaris & Monica Alonso & Gregorio Lopez & Jose Ignacio Moreno & Daniel Olmeda & Javier Coca, 2017. "Assessment of an Adaptive Load Forecasting Methodology in a Smart Grid Demonstration Project," Energies, MDPI, vol. 10(2), pages 1-23, February.
    14. Sergio Potenciano Menci & Julien Le Baut & Javier Matanza Domingo & Gregorio López López & Rafael Cossent Arín & Manuel Pio Silva, 2020. "A Novel Methodology for the Scalability Analysis of ICT Systems for Smart Grids Based on SGAM: The InteGrid Project Approach," Energies, MDPI, vol. 13(15), pages 1-24, July.
    15. José-Fernán Martínez & Jesús Rodríguez-Molina & Pedro Castillejo & Rubén De Diego, 2013. "Middleware Architectures for the Smart Grid: Survey and Challenges in the Foreseeable Future," Energies, MDPI, vol. 6(7), pages 1-29, July.
    16. Giovanni Artale & Giuseppe Caravello & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Salvatore Guaiana & Ninh Nguyen Quang & Marco Palmeri & Nicola Panzavecchia & Giovanni Tinè, 2020. "A Virtual Tool for Load Flow Analysis in a Micro-Grid," Energies, MDPI, vol. 13(12), pages 1-26, June.
    17. Gregorio López & José Ignacio Moreno & Eutimio Sánchez & Cristina Martínez & Fernando Martín, 2017. "Noise Sources, Effects and Countermeasures in Narrowband Power-Line Communications Networks: A Practical Approach," Energies, MDPI, vol. 10(8), pages 1-42, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:569-:d:74406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.