IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4451-d1729645.html
   My bibliography  Save this article

Heat Exchange Effectiveness and Influence Mechanism of Coaxial Downhole in the Alpine Region of Xining City, Qinghai Province

Author

Listed:
  • Zhen Zhao

    (Key Laboratory of Environmental Geology of Qinghai Province, Bureau of Environmental Geology Exploration of Qinghai Province, Xining 810007, China
    Qinghai Engineering Research Center of Geoenvironment Protection and Geohazard Prevention, Xining 810007, China
    Qinghai 906 Engineering Survey and Design Institute Co., Ltd., Xining 810000, China)

  • Xinkai Zhan

    (School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China)

  • Baizhong Yan

    (Key Laboratory of Environmental Geology of Qinghai Province, Bureau of Environmental Geology Exploration of Qinghai Province, Xining 810007, China)

  • Guangxiong Qin

    (Key Laboratory of Environmental Geology of Qinghai Province, Bureau of Environmental Geology Exploration of Qinghai Province, Xining 810007, China
    Qinghai Engineering Research Center of Geoenvironment Protection and Geohazard Prevention, Xining 810007, China
    Qinghai 906 Engineering Survey and Design Institute Co., Ltd., Xining 810000, China)

  • Yanbo Yu

    (School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China)

Abstract

To enhance the development efficiency of medium–deep geothermal resources in cold regions, this study focuses on a coaxial borehole heat exchanger (CBHE) located in Dapuzi Town, Xining City, Qinghai Province. Based on field-scale heat exchange experiments, a three-dimensional numerical model of the CBHE was developed using COMSOL Multiphysics 6.2, incorporating both conductive heat transfer in the surrounding geological formation and convective heat transfer within the wellbore. The model was calibrated and validated against measured data. On this basis, the effects of wellhead injection flow rate, injection temperature, and the thermal conductivity of the inner pipe on heat exchange performance were systematically analyzed. The results show that in cold regions with high altitudes (2000–3000 m) and medium–deep low-temperature geothermal reservoirs (68.8 °C), using a coaxial heat exchange system for space heating delivers good heat extraction performance, with a maximum average power output of 282.37 kW. Among the parameters, the injection flow rate has the most significant impact on heat extraction. When the flow rate increases from 10 m 3 /h to 30 m 3 /h, the heat extraction power increases by 57.58%. An increase in injection temperature helps suppress thermal short-circuiting and improves the effluent temperature, but excessively high temperatures lead to a decline in heat extraction. Additionally, increasing the thermal conductivity of the inner pipe significantly intensifies thermal short-circuiting and reduces overall heat exchange capacity. Under constant reservoir conditions, the thermal influence radius expands with both depth and operating time, reaching a maximum of 10.04 m by the end of the heating period. For the CBHE system in Dapuzi, maintaining an injection flow rate of 20–25 m 3 /h and an injection temperature of approximately 20 °C can achieve an optimal balance between effluent temperature and heat extraction.

Suggested Citation

  • Zhen Zhao & Xinkai Zhan & Baizhong Yan & Guangxiong Qin & Yanbo Yu, 2025. "Heat Exchange Effectiveness and Influence Mechanism of Coaxial Downhole in the Alpine Region of Xining City, Qinghai Province," Energies, MDPI, vol. 18(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4451-:d:1729645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Meijie & Wang, Jiali, 2025. "Enhanced heat extraction for coaxial medium-deep borehole heat exchangers by adding triangular fins on the outer tube wall," Renewable Energy, Elsevier, vol. 242(C).
    2. Gordon, David & Bolisetti, Tirupati & Ting, David S-K. & Reitsma, Stanley, 2018. "Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 115(C), pages 946-953.
    3. Li, Mingqi & Shi, Yan & Chen, Hongxu & Liu, Chengcheng & Li, Hongchao, 2024. "Study on the heat transfer performance of coaxial casing heat exchanger for medium and deep geothermal energy in cold regions," Renewable Energy, Elsevier, vol. 237(PB).
    4. Wang, Ye & Liu, Hengjian & Zhang, Qiqiang & Zhang, Luyu, 2025. "Thermal performance analysis of a deep coaxial borehole heat exchanger with a horizontal well based on a novel semi-analytical model," Renewable Energy, Elsevier, vol. 239(C).
    5. Ma, Yongfa & Yang, Fengtian & Zhu, Ruijie & Zhou, Xuejun & Liu, Guang & Yuan, Lijuan & Wang, Xu & Dong, Junling & Lü, Honglin & Li, Chang & Zhan, Tao & Su, Bin & Xu, Siqi, 2024. "A numerical study on the sustainability and efficiency of deep coaxial borehole heat exchanger systems in the cold region of northeast China," Renewable Energy, Elsevier, vol. 237(PA).
    6. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    7. Zanchini, E. & Lazzari, S. & Priarone, A., 2010. "Improving the thermal performance of coaxial borehole heat exchangers," Energy, Elsevier, vol. 35(2), pages 657-666.
    8. Niu, Qinghe & Ma, Kaiyuan & Wang, Wei & Pan, Jienan & Wang, Qizhi & Du, Zhigang & Wang, Zhenzhi & Yuan, Wei & Zheng, Yongxiang & Shangguan, Shuantong & Qi, Xiaofei & Pan, Miaomiao & Ji, Zhongmin, 2023. "Multifactor analysis of heat extraction performance of coaxial heat exchanger applied to hot dry rock resources exploration: A case study in matouying uplift, Tangshan, China," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harshini, R.D.G.F. & Chaudhuri, A. & Ranjith, P.G, 2024. "Harnessing the heat below: Efficacy of closed-loop systems in the cooper basin, Australia," Energy, Elsevier, vol. 312(C).
    2. Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
    3. Jianlin Li & Xupeng Qi & Xiaoli Li & Huijie Huang & Jian Gao, 2025. "Research on the Optimized Design of Medium and Deep Ground-Source Heat Pump Systems Considering End-Load Variation," Sustainability, MDPI, vol. 17(7), pages 1-24, April.
    4. Yildirim, Nurdan & Parmanto, Slamet & Akkurt, Gulden Gokcen, 2019. "Thermodynamic assessment of downhole heat exchangers for geothermal power generation," Renewable Energy, Elsevier, vol. 141(C), pages 1080-1091.
    5. Luo, Yongqaing & Guo, Hongshan & Meggers, Forrest & Zhang, Ling, 2019. "Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis," Energy, Elsevier, vol. 185(C), pages 1298-1313.
    6. Niu, Qinghe & Ma, Kaiyuan & Wang, Wei & Pan, Jienan & Wang, Qizhi & Du, Zhigang & Wang, Zhenzhi & Yuan, Wei & Zheng, Yongxiang & Shangguan, Shuantong & Qi, Xiaofei & Pan, Miaomiao & Ji, Zhongmin, 2023. "Multifactor analysis of heat extraction performance of coaxial heat exchanger applied to hot dry rock resources exploration: A case study in matouying uplift, Tangshan, China," Energy, Elsevier, vol. 282(C).
    7. Quirosa, Gonzalo & Torres, Miguel & Becerra, José A. & Jiménez-Espadafor, Francisco J. & Chacartegui, Ricardo, 2023. "Energy analysis of an ultra-low temperature district heating and cooling system with coaxial borehole heat exchangers," Energy, Elsevier, vol. 278(PA).
    8. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    9. Holmberg, Henrik & Acuña, José & Næss, Erling & Sønju, Otto K., 2016. "Thermal evaluation of coaxial deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 97(C), pages 65-76.
    10. Li, Chao & Guan, Yanling & Liu, Jianhong & Jiang, Chao & Yang, Ruitao & Hou, Xueming, 2020. "Heat transfer performance of a deep ground heat exchanger for building heating in long-term service," Renewable Energy, Elsevier, vol. 166(C), pages 20-34.
    11. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    12. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    13. M.F, Yozy Kepdib & R.M, Singh & C, Madiai & J.A, Facciorusso, 2025. "Heating and cooling geothermal systems in urban settings: The potential of energy micropiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    14. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    15. Gao, Qian & Jin, Guang & Yu, Huagui & An, Erliang & Ghassemi, Ahmad & Zhou, Desheng & Meng, He, 2024. "Heat extraction from abandoned petroleum wells utilizing coaxial borehole heat exchanger in Ordos basin, China," Renewable Energy, Elsevier, vol. 230(C).
    16. Choi, Hoon Ki & Yoo, Geun Jong & Pak, Jae Hun & Lee, Chang Hee, 2018. "Numerical study on heat transfer characteristics in branch tube type ground heat exchanger," Renewable Energy, Elsevier, vol. 115(C), pages 585-599.
    17. Al Saedi, A.Q. & Sharma, P. & Kabir, C.S., 2021. "A novel cyclical wellbore-fluid circulation strategy for extracting geothermal energy," Energy, Elsevier, vol. 235(C).
    18. Dong, Shihao & Yu, Yuelong & Li, Bingxue & Ni, Long, 2025. "Thermal analysis of medium-depth borehole heat exchanger coupled layered stratum thermal conductivity," Renewable Energy, Elsevier, vol. 246(C).
    19. Dong, Shihao & Yu, Yuelong & Li, Bingxue & Ni, Long, 2024. "Geologic and thermal conductivity analysis based on geophysical test and combined modeling," Energy, Elsevier, vol. 310(C).
    20. Chen, Hongfei & Liu, Hongtao & Yang, Fuxin & Tan, Houzhang & Wang, Bangju, 2023. "Field measurements and numerical investigation on heat transfer characteristics and long-term performance of deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 205(C), pages 1125-1136.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4451-:d:1729645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.