IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125005427.html
   My bibliography  Save this article

Thermal analysis of medium-depth borehole heat exchanger coupled layered stratum thermal conductivity

Author

Listed:
  • Dong, Shihao
  • Yu, Yuelong
  • Li, Bingxue
  • Ni, Long

Abstract

Medium-depth coaxial borehole heat exchanger is a crucial option for low-carbon heating. However, the complex and variable nature of medium-deep formations poses challenges for accurate thermal conductivity determination, and its correlation with heat transfer mechanisms remains unclear. Hence, a thermal conductivity model incorporating temperature corrections and lithological variations was developed and integrated into a layered analytical heat transfer model. Model analysis shows that strata thermal conductivity and temperature both have significant effects on heat extraction. Geological tests and applications based on Shenyang case found that due to good thermal conductivity of rock skeleton (gneiss), low porosity (1.8 %) and no mud, maximum value of 3.34 W m−1 K−1 was observed near 1063.9–1068.8 m. The average thermal conductivity is 2.58 W m−1 K−1. Formations with low porosity, low permeability, and low mud-content are denser, which favors heat conduction, contrary to hydro-geothermal wells that rely on highly porous and fractured formations. The deviation between the calculated results and thermal response test from two regions did not exceed 5.21 %, achieving a high precision. This method enables direct determination of formation thermal properties based on well-logging, providing a convenient and engineering-friendly approach.

Suggested Citation

  • Dong, Shihao & Yu, Yuelong & Li, Bingxue & Ni, Long, 2025. "Thermal analysis of medium-depth borehole heat exchanger coupled layered stratum thermal conductivity," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005427
    DOI: 10.1016/j.renene.2025.122880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125005427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.