IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4424-d1727855.html
   My bibliography  Save this article

Thermodynamic Analysis and Optimization of a Regenerative Heat Exchange System for Solid Oxide Electrolyzer-Based Hydrogen Production

Author

Listed:
  • Georgi Todorov

    (Department of Production Technology and Systems, Faculty of Industrial Technology, Technical University of Sofia, 1797 Sofia, Bulgaria)

  • Konstantin Kamberov

    (Department of Production Technology and Systems, Faculty of Industrial Technology, Technical University of Sofia, 1797 Sofia, Bulgaria)

  • Todor Todorov

    (Department of Theory of Mechanisms and Machines, Faculty of Industrial Technology, Technical University of Sofia, 1797 Sofia, Bulgaria)

Abstract

The article discusses a regenerative heat exchange system for a solid oxide electrolyzer cell (SOEC) used in the production of green hydrogen. The heating system comprises four heat exchangers, one condenser heat exchanger, and a mixer evaporator. A pump and two throttle valves have been added to separate the hydrogen at an elevated steam condensation temperature. Assuming steady flow, a thermodynamic analysis was performed to validate the design and to predict the main parameters of the heating system. Numerical optimization was then used to determine the optimal temperature distribution, ensuring the lowest possible additional external energy requirement for the regenerative system. The proportions of energy gained through heat exchange were determined, and their distribution analyzed. The calculated thermal efficiency of the regenerative system is 75%, while its exergy efficiency is 73%. These results can be applied to optimize the design of heat exchangers for hydrogen production systems using SOECs.

Suggested Citation

  • Georgi Todorov & Konstantin Kamberov & Todor Todorov, 2025. "Thermodynamic Analysis and Optimization of a Regenerative Heat Exchange System for Solid Oxide Electrolyzer-Based Hydrogen Production," Energies, MDPI, vol. 18(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4424-:d:1727855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Penner, S.S., 2006. "Steps toward the hydrogen economy," Energy, Elsevier, vol. 31(1), pages 33-43.
    2. Min, Gyubin & Choi, Saeyoung & Hong, Jongsup, 2022. "A review of solid oxide steam-electrolysis cell systems: Thermodynamics and thermal integration," Applied Energy, Elsevier, vol. 328(C).
    3. Asmae Abousalmia & Seckin Karagoz, 2025. "Design and Simulation of an Integrated Process for the Co-Production of Power, Hydrogen, and DME by Using an Electrolyzer’s System," Energies, MDPI, vol. 18(10), pages 1-17, May.
    4. Shaocheng Lang & Jinliang Yuan & Houcheng Zhang, 2024. "Optimally Splitting Solar Spectrums by Concentrating Solar Spectrums Splitter for Hydrogen Production via Solid Oxide Electrolysis Cell," Energies, MDPI, vol. 17(9), pages 1-20, April.
    5. Anke Hagen & Riccardo Caldogno & Federico Capotondo & Xiufu Sun, 2022. "Metal Supported Electrolysis Cells," Energies, MDPI, vol. 15(6), pages 1-12, March.
    6. Liu, Hongwei & Shuai, Wei & Yao, Zhen & Xuan, Jin & Ni, Meng & Xiao, Gang & Xu, Haoran, 2025. "Optimization of solid oxide electrolysis cells using concentrated solar-thermal energy storage: A hybrid deep learning approach," Applied Energy, Elsevier, vol. 377(PC).
    7. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2018. "Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production," Applied Energy, Elsevier, vol. 225(C), pages 471-485.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vo, Dat-Nguyen & Qi, Meng & Lee, Chang-Ha & Yin, Xunyuan, 2025. "Advanced integration strategies and machine learning-based superstructure optimization for Power-to-Methanol," Applied Energy, Elsevier, vol. 378(PA).
    2. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    3. Kim, Dohee & Kim, Taehyun & Kim, Yungeon & Park, Jinwoo, 2025. "Integration of biomass gasification and water electrolysis: Importance of sweep gas selection," Applied Energy, Elsevier, vol. 393(C).
    4. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    5. Wu, Chenxi & Zhu, Qunzhi & Dou, Binlin & Fu, Zaiguo & Wang, Jikai & Mao, Siqi, 2024. "Thermodynamic analysis of a solid oxide electrolysis cell system in thermoneutral mode integrated with industrial waste heat for hydrogen production," Energy, Elsevier, vol. 301(C).
    6. Liang, Zhaojian & Chen, Shanlin & Ni, Meng & Wang, Jingyi & Li, Mengying, 2024. "A novel control strategy to neutralize internal heat source within solid oxide electrolysis cell (SOEC) under variable solar power conditions," Applied Energy, Elsevier, vol. 371(C).
    7. Weng, Baicheng & Wu, Zhu & Li, Zhilin & Yang, Hui, 2012. "Hydrogen generation from hydrolysis of MNH2BH3 and NH3BH3/MH (M=Li, Na) for fuel cells based unmanned submarine vehicles application," Energy, Elsevier, vol. 38(1), pages 205-211.
    8. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    9. Botterud, Audun & Yildiz, Bilge & Conzelmann, Guenter & Petri, Mark C., 2008. "Nuclear hydrogen: An assessment of product flexibility and market viability," Energy Policy, Elsevier, vol. 36(10), pages 3961-3973, October.
    10. Bojarska, Zuzanna & Karnas, Maria Jarząbek & Godula-Jopek, Agata & Mandrek, Sławomir & Makowski, Łukasz, 2025. "Simultaneous hydrogen generation and organic oxidation in low-temperature electrolyzers," Applied Energy, Elsevier, vol. 389(C).
    11. Zhou, Huairong & Cao, Abo & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Yang, Siyu, 2024. "Process integration and analysis of coupling solid oxide electrolysis cell (SOEC) and CO2 to methanol," Energy, Elsevier, vol. 307(C).
    12. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    13. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    14. Zhang, Xiaofeng & Su, Junjie & Jiao, Fan & Zeng, Rong & Pan, Jinjun & He, Xu & Deng, Qiaolin & Li, Hongqiang, 2024. "Performance investigation and operation optimization of an innovative hybrid renewable energy integration system for commercial building complex and hydrogen vehicles," Energy, Elsevier, vol. 301(C).
    15. González Rodríguez, Daniel & Brayner de Oliveira Lira, Carlos Alberto & García Parra, Lázaro Roger & García Hernández, Carlos Rafael & de la Torre Valdés, Raciel, 2018. "Computational model of a sulfur-iodine thermochemical water splitting system coupled to a VHTR for nuclear hydrogen production," Energy, Elsevier, vol. 147(C), pages 1165-1176.
    16. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    17. Towhid Gholizadeh & Hamed Ghiasirad & Anna Skorek-Osikowska, 2024. "Sustainable Biomethanol and Biomethane Production via Anaerobic Digestion, Oxy-Fuel Gas Turbine and Amine Scrubbing CO 2 Capture," Energies, MDPI, vol. 17(18), pages 1-23, September.
    18. Sarkar, Susanjib & Kumar, Amit & Sultana, Arifa, 2011. "Biofuels and biochemicals production from forest biomass in Western Canada," Energy, Elsevier, vol. 36(10), pages 6251-6262.
    19. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    20. Shuai, Wei & Wang, Keqin & Zhang, Tian & He, Yibin & Xu, Haoran & Zhu, Peiwang & Xiao, Gang, 2025. "Multi-objective optimization of operational strategy and capacity configuration for hybrid energy system combined with concentrated solar power plant," Applied Energy, Elsevier, vol. 390(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4424-:d:1727855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.