IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4399-d1726966.html
   My bibliography  Save this article

Advanced Modeling of Fuel Efficiency in Light-Duty Vehicles Using Gamma Regression with Log-Link Under Real Driving Conditions at High Altitude: Quito, Ecuador Case Study

Author

Listed:
  • Paúl Andrés Molina-Campoverde

    (Grupo de Ingeniería Automotriz, Movilidad y Transporte (GiAUTO), Carrera de Ingeniería Automotriz-Campus Sur, Universidad Politécnica Salesiana, Quito 170702, Ecuador)

  • Juan José Molina-Campoverde

    (Grupo de Ingeniería Automotriz, Movilidad y Transporte (GiAUTO), Carrera de Ingeniería Automotriz-Campus Sur, Universidad Politécnica Salesiana, Quito 170702, Ecuador)

  • Johan Tipanluisa-Portilla

    (Grupo de Ingeniería Automotriz, Movilidad y Transporte (GiAUTO), Carrera de Ingeniería Automotriz-Campus Sur, Universidad Politécnica Salesiana, Quito 170702, Ecuador)

Abstract

Fuel efficiency (FE) modeling under real-world conditions remains limited in Andean cities, where topographical and traffic conditions affect vehicle performance. Vehicles powered by spark-ignition engines are the most popular in Latin America, but few studies integrate dynamic conditions with geographic features. This study addresses this gap by developing an explanatory model to predict FE for light-duty vehicles (LDVs) in the Metropolitan District of Quito (DMQ), which is one of the most congested cities in Latin America. Data were collected from eight vehicles circulating under real conditions across 35 zones in the DMQ. Predictors such as vehicle speed (VSS), acceleration (A), speed per acceleration in its 95th percentile (VA[95]), road slope, and Vehicle-Specific Power (VSP) were included in the analysis. As a first attempt, linear models were tested, but the assumptions were not satisfied. Therefore, a Gamma regression model with a logarithmic link was selected. The final model achieved a Root Mean Square Error (RMSE) of 0.939, a Relative RMSE (RRMSE) of 0.155, a Mean Absolute Error (MAE) of 0.754, and an approximate coefficient of determination ( R 2 ) of 0.956. This methodology combines continuous and categorical variables and offers a replicable framework for FE estimation in other urban contexts.

Suggested Citation

  • Paúl Andrés Molina-Campoverde & Juan José Molina-Campoverde & Johan Tipanluisa-Portilla, 2025. "Advanced Modeling of Fuel Efficiency in Light-Duty Vehicles Using Gamma Regression with Log-Link Under Real Driving Conditions at High Altitude: Quito, Ecuador Case Study," Energies, MDPI, vol. 18(16), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4399-:d:1726966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4399/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4399-:d:1726966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.