IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4193-d1719562.html
   My bibliography  Save this article

Innovative Deposition of AZO as Recombination Layer on Silicon Nanowire Scaffold for Potential Application in Silicon/Perovskite Tandem Solar Cell

Author

Listed:
  • Grażyna Kulesza-Matlak

    (Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland)

  • Marek Szindler

    (Faculty of Mechanical Engineering, Silesian University of Technology, 18A Konarskiego St., 44-100 Gliwice, Poland)

  • Magdalena M. Szindler

    (Faculty of Mechanical Engineering, Silesian University of Technology, 18A Konarskiego St., 44-100 Gliwice, Poland)

  • Milena Kiliszkiewicz

    (Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 27 Wybrzeze Stanisława Wyspianskiego St., 50-370 Wroclaw, Poland)

  • Urszula Wawrzaszek

    (Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 27 Wybrzeze Stanisława Wyspianskiego St., 50-370 Wroclaw, Poland)

  • Anna Sypień

    (Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland)

  • Łukasz Major

    (Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland)

  • Kazimierz Drabczyk

    (Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, 2 Willowa St., 43-309 Bielsko-Biala, Poland)

Abstract

Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined by cross-sectional SEM/TEM and profilometry, revealing fully conformal ALD coatings with tunable thicknesses (40–120 nm) versus tip-capped, semi-uniform MS films (100–120 nm). Optical transmission measurements on glass substrates showed that both 120 nm ALD and MS layers exhibit interference maxima near 450–500 nm and 72–89% transmission across 800–1200 nm; the thinnest ALD films reached up to 86% near-IR transparency. Four-point probe analysis demonstrated that ALD reduces surface resistance from 1150 Ω/□ at 40 nm to 245 Ω/□ at 120 nm, while MS layers achieved 317 Ω/□ at 120 nm. These results delineate the balance between conformality, transparency, and conductivity, providing design guidelines for AZO recombination interfaces in next-generation tandem photovoltaics.

Suggested Citation

  • Grażyna Kulesza-Matlak & Marek Szindler & Magdalena M. Szindler & Milena Kiliszkiewicz & Urszula Wawrzaszek & Anna Sypień & Łukasz Major & Kazimierz Drabczyk, 2025. "Innovative Deposition of AZO as Recombination Layer on Silicon Nanowire Scaffold for Potential Application in Silicon/Perovskite Tandem Solar Cell," Energies, MDPI, vol. 18(15), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4193-:d:1719562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomas Leijtens & Kevin A. Bush & Rohit Prasanna & Michael D. McGehee, 2018. "Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors," Nature Energy, Nature, vol. 3(10), pages 828-838, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
    2. Chenyang Shi & Jianan Wang & Xia Lei & Qisen Zhou & Weitao Wang & Zhichun Yang & Sanwan Liu & Jiaqi Zhang & He Zhu & Rui Chen & Yongyan Pan & Zhengtian Tan & Wenguang Liu & Zhengjing Zhao & Zihe Cai &, 2025. "Modulating competitive adsorption of hybrid self-assembled molecules for efficient wide-bandgap perovskite solar cells and tandems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Wenbo Li & Zhe Li & Shun Zhou & Yanzhuo Gou & Guang Li & Jinghao Li & Cheng Wang & Yan Zeng & Jiakai Yan & Yan Li & Wei Dai & Yaoguang Rong & Weijun Ke & Ti Wang & Hongxing Xu, 2025. "Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Grażyna Kulesza-Matlak & Kazimierz Drabczyk & Anna Sypień & Agnieszka Pająk & Łukasz Major & Marek Lipiński, 2021. "Interlayer Microstructure Analysis of the Transition Zone in the Silicon/Perovskite Tandem Solar Cell," Energies, MDPI, vol. 14(20), pages 1-15, October.
    5. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Jianan Wang & Shuaifeng Hu & He Zhu & Sanwan Liu & Zhongyong Zhang & Rui Chen & Junke Wang & Chenyang Shi & Jiaqi Zhang & Wentao Liu & Xia Lei & Bin Liu & Yongyan Pan & Fumeng Ren & Hasan Raza & Qisen, 2025. "Mercapto-functionalized scaffold improves perovskite buried interfaces for tandem photovoltaics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    7. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    8. Yunqing Cao & Ping Zhu & Dongke Li & Xianghua Zeng & Dan Shan, 2020. "Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots," Energies, MDPI, vol. 13(18), pages 1-11, September.
    9. Junjun Zhang & Zengyang Ma & Yitian Zhang & Xinxing Liu & Ruiming Li & Qianqian Lin & Guojia Fang & Xue Zheng & Weimin Li & Chunlei Yang & Jianmin Li & Junbo Gong & Xudong Xiao, 2024. "Highly efficient narrow bandgap Cu(In,Ga)Se2 solar cells with enhanced open circuit voltage for tandem application," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Baptiste Marteau & Thibaut Desrues & Quentin Rafhay & Anne Kaminski & Sébastien Dubois, 2023. "Passivating Silicon Tunnel Diode for Perovskite on Silicon Nip Tandem Solar Cells," Energies, MDPI, vol. 16(11), pages 1-13, May.
    11. Kyle Frohna & Cullen Chosy & Amran Al-Ashouri & Florian Scheler & Yu-Hsien Chiang & Milos Dubajic & Julia E. Parker & Jessica M. Walker & Lea Zimmermann & Thomas A. Selby & Yang Lu & Bart Roose & Stev, 2025. "The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells," Nature Energy, Nature, vol. 10(1), pages 66-76, January.
    12. Yurui Wang & Renxing Lin & Xiaoyu Wang & Chenshuaiyu Liu & Yameen Ahmed & Zilong Huang & Zhibin Zhang & Hongjiang Li & Mei Zhang & Yuan Gao & Haowen Luo & Pu Wu & Han Gao & Xuntian Zheng & Manya Li & , 2023. "Oxidation-resistant all-perovskite tandem solar cells in substrate configuration," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Abbasiyan, Amin & Golmohammadi, Saeed, 2025. "Back contact optimization of both sub-cells in bifacial perovskite/silicon tandem solar cell," Renewable Energy, Elsevier, vol. 242(C).
    14. Xinlong Wang & Zhiqin Ying & Jingming Zheng & Xin Li & Zhipeng Zhang & Chuanxiao Xiao & Ying Chen & Ming Wu & Zhenhai Yang & Jingsong Sun & Jia-Ru Xu & Jiang Sheng & Yuheng Zeng & Xi Yang & Guichuan X, 2023. "Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Weiqing Chen & Shun Zhou & Hongsen Cui & Weiwei Meng & Hongling Guan & Guojun Zeng & Yansong Ge & Sengke Cheng & Zixi Yu & Dexin Pu & Lishuai Huang & Jin Zhou & Guoyi Chen & Guang Li & Hongyi Fang & Z, 2025. "Universal in situ oxide-based ABX3-structured seeds for templating halide perovskite growth in All-perovskite tandems," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    16. Yue Wang & Senyun Ye & Jia Wei Melvin Lim & David Giovanni & Minjun Feng & Jianhui Fu & Harish N S Krishnamoorthy & Qiannan Zhang & Qiang Xu & Rui Cai & Tze Chien Sum, 2023. "Carrier multiplication in perovskite solar cells with internal quantum efficiency exceeding 100%," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Khaoula Amri & Rabeb Belghouthi & Michel Aillerie & Rached Gharbi, 2021. "Device Optimization of a Lead-Free Perovskite/Silicon Tandem Solar Cell with 24.4% Power Conversion Efficiency," Energies, MDPI, vol. 14(12), pages 1-20, June.
    18. Qiman Li & Wenming Chai & Xin Luo & Weidong Zhu & Dazheng Chen & Long Zhou & He Xi & Hang Dong & Chunfu Zhang & Yue Hao, 2025. "Wide-Bandgap Subcells for All-Perovskite Tandem Solar Cells: Recent Advances, Challenges, and Future Perspectives," Energies, MDPI, vol. 18(10), pages 1-29, May.
    19. Yongyan Pan & Jianan Wang & Zhenxing Sun & Jiaqi Zhang & Zheng Zhou & Chenyang Shi & Sanwan Liu & Fumeng Ren & Rui Chen & Yong Cai & Huande Sun & Bin Liu & Zhongyong Zhang & Zhengjing Zhao & Zihe Cai , 2024. "Surface chemical polishing and passivation minimize non-radiative recombination for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Gemma Giliberti & Francesco Di Giacomo & Federica Cappelluti, 2022. "Three Terminal Perovskite/Silicon Solar Cell with Bipolar Transistor Architecture," Energies, MDPI, vol. 15(21), pages 1-11, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4193-:d:1719562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.