IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4346-d1156460.html
   My bibliography  Save this article

Passivating Silicon Tunnel Diode for Perovskite on Silicon Nip Tandem Solar Cells

Author

Listed:
  • Baptiste Marteau

    (Université Grenoble Alpes, CEA, LITEN, Campus INES, 73375 Le Bourget du Lac, France)

  • Thibaut Desrues

    (Université Grenoble Alpes, CEA, LITEN, Campus INES, 73375 Le Bourget du Lac, France)

  • Quentin Rafhay

    (Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, Grenoble INP, IMEP-LaHC, 38000 Grenoble, France)

  • Anne Kaminski

    (Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, Grenoble INP, IMEP-LaHC, 38000 Grenoble, France)

  • Sébastien Dubois

    (Université Grenoble Alpes, CEA, LITEN, Campus INES, 73375 Le Bourget du Lac, France)

Abstract

Silicon solar cells featuring tunnel oxide passivated contacts (TOPCon) benefit from high efficiencies and low production costs and are on the verge of emerging as the new photovoltaic market mainstream technology. Their association with Perovskite cells in 2-terminal tandem devices enables efficiency breakthroughs while maintaining low fabrication costs. However, it requires the design of a highly specific interface to ensure both optical and electrical continuities between subcells. Here, we evaluated the potential of tunnel diodes as an alternative to ITO thin films, the reference for such applications. The PECV deposition of an nc-Si (n + ) layer on top of a boron-doped poly-Si/SiO x passivated contact forms a diode with high doping levels (>2 × 10 20 carrier·cm −3 ) and a sharp junction (<4 nm), thus reaching both ESAKI-like tunnel diode requirements. SIMS measurements of the nc-Si (n + ) (deposited at 230 °C) reveal an H-rich layer. Interestingly, subsequent annealing at 400 °C led to a passivation improvement associated with the hydrogenation of the buried poly-Si/SiO x stack. Dark I–V measurements reveal similar characteristics for resistivity samples with or without the nc-Si (n + ) layer, and modeling results confirm that highly conductive junctions are obtained. Finally, we produced 9 cm 2 nip perovskite on silicon tandem devices, integrating a tunnel diode as the recombination junction between both subcells. Working devices with 18.8% average efficiency were obtained, with only 1.1% abs PCE losses compared with those of references. Thus, tunnel diodes appear to be an efficient, industrially suitable, and indium-free alternative to ITO thin films.

Suggested Citation

  • Baptiste Marteau & Thibaut Desrues & Quentin Rafhay & Anne Kaminski & Sébastien Dubois, 2023. "Passivating Silicon Tunnel Diode for Perovskite on Silicon Nip Tandem Solar Cells," Energies, MDPI, vol. 16(11), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4346-:d:1156460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomas Leijtens & Kevin A. Bush & Rohit Prasanna & Michael D. McGehee, 2018. "Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors," Nature Energy, Nature, vol. 3(10), pages 828-838, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grażyna Kulesza-Matlak & Kazimierz Drabczyk & Anna Sypień & Agnieszka Pająk & Łukasz Major & Marek Lipiński, 2021. "Interlayer Microstructure Analysis of the Transition Zone in the Silicon/Perovskite Tandem Solar Cell," Energies, MDPI, vol. 14(20), pages 1-15, October.
    2. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    3. Yunqing Cao & Ping Zhu & Dongke Li & Xianghua Zeng & Dan Shan, 2020. "Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots," Energies, MDPI, vol. 13(18), pages 1-11, September.
    4. Khaoula Amri & Rabeb Belghouthi & Michel Aillerie & Rached Gharbi, 2021. "Device Optimization of a Lead-Free Perovskite/Silicon Tandem Solar Cell with 24.4% Power Conversion Efficiency," Energies, MDPI, vol. 14(12), pages 1-20, June.
    5. Gemma Giliberti & Francesco Di Giacomo & Federica Cappelluti, 2022. "Three Terminal Perovskite/Silicon Solar Cell with Bipolar Transistor Architecture," Energies, MDPI, vol. 15(21), pages 1-11, November.
    6. Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
    7. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Yurui Wang & Renxing Lin & Xiaoyu Wang & Chenshuaiyu Liu & Yameen Ahmed & Zilong Huang & Zhibin Zhang & Hongjiang Li & Mei Zhang & Yuan Gao & Haowen Luo & Pu Wu & Han Gao & Xuntian Zheng & Manya Li & , 2023. "Oxidation-resistant all-perovskite tandem solar cells in substrate configuration," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Xinlong Wang & Zhiqin Ying & Jingming Zheng & Xin Li & Zhipeng Zhang & Chuanxiao Xiao & Ying Chen & Ming Wu & Zhenhai Yang & Jingsong Sun & Jia-Ru Xu & Jiang Sheng & Yuheng Zeng & Xi Yang & Guichuan X, 2023. "Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Yue Wang & Senyun Ye & Jia Wei Melvin Lim & David Giovanni & Minjun Feng & Jianhui Fu & Harish N S Krishnamoorthy & Qiannan Zhang & Qiang Xu & Rui Cai & Tze Chien Sum, 2023. "Carrier multiplication in perovskite solar cells with internal quantum efficiency exceeding 100%," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Yunlong Zhang & Long Zhou & Chunfu Zhang, 2024. "Research Progress of Semi-Transparent Perovskite and Four-Terminal Perovskite/Silicon Tandem Solar Cells," Energies, MDPI, vol. 17(8), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4346-:d:1156460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.