IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2415-d1651545.html
   My bibliography  Save this article

Wide-Bandgap Subcells for All-Perovskite Tandem Solar Cells: Recent Advances, Challenges, and Future Perspectives

Author

Listed:
  • Qiman Li

    (State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China)

  • Wenming Chai

    (State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China)

  • Xin Luo

    (State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China)

  • Weidong Zhu

    (State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China)

  • Dazheng Chen

    (State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China)

  • Long Zhou

    (State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
    School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China)

  • He Xi

    (State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
    School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China)

  • Hang Dong

    (State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China)

  • Chunfu Zhang

    (State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China)

  • Yue Hao

    (State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China)

Abstract

All-perovskite tandem solar cells (APTSCs) offer a promising pathway to surpassing the efficiency limits of single-junction photovoltaics. The wide-bandgap (WBG) subcell, serving as the top absorber, plays a critical role in optimizing light harvesting and charge extraction in tandem architectures. This review comprehensively summarizes recent advancements in WBG subcells, focusing on material design, defect passivation strategies, and interfacial engineering to address challenges such as phase instability, halide segregation, and voltage losses. Key innovations, including compositional tuning, additive engineering, and charge transport layer optimization, are critically analyzed for their contributions to efficiency and stability enhancement. Despite significant progress, challenges remain regarding scalability, long-term stability under illumination, and cost-effective fabrication. Future research directions include the development of lead-reduced perovskites, machine learning-guided material discovery, and scalable deposition techniques. This review provides insights into advancing WBG subcells toward high-efficiency, stable, and eco-friendly APTSCs for next-generation solar energy applications.

Suggested Citation

  • Qiman Li & Wenming Chai & Xin Luo & Weidong Zhu & Dazheng Chen & Long Zhou & He Xi & Hang Dong & Chunfu Zhang & Yue Hao, 2025. "Wide-Bandgap Subcells for All-Perovskite Tandem Solar Cells: Recent Advances, Challenges, and Future Perspectives," Energies, MDPI, vol. 18(10), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2415-:d:1651545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2415/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2415/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junke Wang & Bruno Branco & Willemijn H. M. Remmerswaal & Shuaifeng Hu & Nick R. M. Schipper & Valerio Zardetto & Laura Bellini & Nicolas Daub & Martijn M. Wienk & Atsushi Wakamiya & Henry J. Snaith &, 2025. "Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Tomas Leijtens & Kevin A. Bush & Rohit Prasanna & Michael D. McGehee, 2018. "Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors," Nature Energy, Nature, vol. 3(10), pages 828-838, October.
    3. Hanul Min & Do Yoon Lee & Junu Kim & Gwisu Kim & Kyoung Su Lee & Jongbeom Kim & Min Jae Paik & Young Ki Kim & Kwang S. Kim & Min Gyu Kim & Tae Joo Shin & Sang Seok, 2021. "Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes," Nature, Nature, vol. 598(7881), pages 444-450, October.
    4. Hao Chen & Aidan Maxwell & Chongwen Li & Sam Teale & Bin Chen & Tong Zhu & Esma Ugur & George Harrison & Luke Grater & Junke Wang & Zaiwei Wang & Lewei Zeng & So Min Park & Lei Chen & Peter Serles & R, 2023. "Regulating surface potential maximizes voltage in all-perovskite tandems," Nature, Nature, vol. 613(7945), pages 676-681, January.
    5. Hao Chen & Aidan Maxwell & Chongwen Li & Sam Teale & Bin Chen & Tong Zhu & Esma Ugur & George Harrison & Luke Grater & Junke Wang & Zaiwei Wang & Lewei Zeng & So Min Park & Lei Chen & Peter Serles & R, 2023. "Publisher Correction: Regulating surface potential maximizes voltage in all-perovskite tandems," Nature, Nature, vol. 620(7973), pages 15-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenyang Shi & Jianan Wang & Xia Lei & Qisen Zhou & Weitao Wang & Zhichun Yang & Sanwan Liu & Jiaqi Zhang & He Zhu & Rui Chen & Yongyan Pan & Zhengtian Tan & Wenguang Liu & Zhengjing Zhao & Zihe Cai &, 2025. "Modulating competitive adsorption of hybrid self-assembled molecules for efficient wide-bandgap perovskite solar cells and tandems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Yongyan Pan & Jianan Wang & Zhenxing Sun & Jiaqi Zhang & Zheng Zhou & Chenyang Shi & Sanwan Liu & Fumeng Ren & Rui Chen & Yong Cai & Huande Sun & Bin Liu & Zhongyong Zhang & Zhengjing Zhao & Zihe Cai , 2024. "Surface chemical polishing and passivation minimize non-radiative recombination for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Bo Li & Qi Liu & Jianqiu Gong & Shuai Li & Chunlei Zhang & Danpeng Gao & Zhongwei Chen & Zhen Li & Xin Wu & Dan Zhao & Zexin Yu & Xintong Li & Yan Wang & Haipeng Lu & Xiao Cheng Zeng & Zonglong Zhu, 2024. "Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Jingwei Zhu & Xiaozhen Huang & Yi Luo & Wenbo Jiao & Yuliang Xu & Juncheng Wang & Zhiyu Gao & Kun Wei & Tianshu Ma & Jiayu You & Jialun Jin & Shenghan Wu & Zhihao Zhang & Wenqing Liang & Yang Wang & S, 2025. "Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Junke Wang & Bruno Branco & Willemijn H. M. Remmerswaal & Shuaifeng Hu & Nick R. M. Schipper & Valerio Zardetto & Laura Bellini & Nicolas Daub & Martijn M. Wienk & Atsushi Wakamiya & Henry J. Snaith &, 2025. "Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Jian Xu & Aidan Maxwell & Zhaoning Song & Abdulaziz S. R. Bati & Hao Chen & Chongwen Li & So Min Park & Yanfa Yan & Bin Chen & Edward H. Sargent, 2024. "The dynamic adsorption affinity of ligands is a surrogate for the passivation of surface defects," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Yao Zhang & Chunyan Li & Haiyan Zhao & Zhongxun Yu & Xiaoan Tang & Jixiang Zhang & Zhenhua Chen & Jianrong Zeng & Peng Zhang & Liyuan Han & Han Chen, 2024. "Synchronized crystallization in tin-lead perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Jingnan Wang & Boxin Jiao & Ruijia Tian & Kexuan Sun & Yuanyuan Meng & Yang Bai & Xiaoyi Lu & Bin Han & Ming Yang & Yaohua Wang & Shujing Zhou & Haibin Pan & Zhenhuan Song & Chuanxiao Xiao & Chang Liu, 2025. "Less-acidic boric acid-functionalized self-assembled monolayer for mitigating NiOx corrosion for efficient all-perovskite tandem solar cells," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    10. Qi Han & Jun Wang & Shuangshuang Tian & Shen Hu & Xuefeng Wu & Rongxu Bai & Haibin Zhao & David W. Zhang & Qingqing Sun & Li Ji, 2024. "Inorganic perovskite-based active multifunctional integrated photonic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Gemma Giliberti & Francesco Di Giacomo & Federica Cappelluti, 2022. "Three Terminal Perovskite/Silicon Solar Cell with Bipolar Transistor Architecture," Energies, MDPI, vol. 15(21), pages 1-11, November.
    12. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Shaobing Xiong & Fuyu Tian & Feng Wang & Aiping Cao & Zeng Chen & Sheng Jiang & Di Li & Bin Xu & Hongbo Wu & Yefan Zhang & Hongwei Qiao & Zaifei Ma & Jianxin Tang & Haiming Zhu & Yefeng Yao & Xianjie , 2024. "Reducing nonradiative recombination for highly efficient inverted perovskite solar cells via a synergistic bimolecular interface," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Ahmed A. Said & Erkan Aydin & Esma Ugur & Zhaojian Xu & Caner Deger & Badri Vishal & Aleš Vlk & Pia Dally & Bumin K. Yildirim & Randi Azmi & Jiang Liu & Edward A. Jackson & Holly M. Johnson & Manting , 2024. "Sublimed C60 for efficient and repeatable perovskite-based solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
    16. Zhonghui Zhu & Matyas Daboczi & Minzhi Chen & Yimin Xuan & Xianglei Liu & Salvador Eslava, 2024. "Ultrastable halide perovskite CsPbBr3 photoanodes achieved with electrocatalytic glassy-carbon and boron-doped diamond sheets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Zhou, Yi-Peng & Wang, Liang-Xu & Wang, Bo-Yi & Chen, Yang & Ran, Chen-Xin & Wu, Zhong-Bin, 2024. "Polarization management of photonic crystals to achieve synergistic optimization of optical, thermal, and electrical performance of building-integrated photovoltaic glazing," Applied Energy, Elsevier, vol. 372(C).
    18. Wenbo Li & Zhe Li & Shun Zhou & Yanzhuo Gou & Guang Li & Jinghao Li & Cheng Wang & Yan Zeng & Jiakai Yan & Yan Li & Wei Dai & Yaoguang Rong & Weijun Ke & Ti Wang & Hongxing Xu, 2025. "Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    20. Grażyna Kulesza-Matlak & Kazimierz Drabczyk & Anna Sypień & Agnieszka Pająk & Łukasz Major & Marek Lipiński, 2021. "Interlayer Microstructure Analysis of the Transition Zone in the Silicon/Perovskite Tandem Solar Cell," Energies, MDPI, vol. 14(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2415-:d:1651545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.