IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4037-d1712705.html
   My bibliography  Save this article

Factors Impacting Projected Annual Energy Production from Offshore Wind Farms on the US East and West Coasts

Author

Listed:
  • Rebecca J. Barthelmie

    (Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA)

  • Kelsey B. Thompson

    (Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA)

  • Sara C. Pryor

    (Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA)

Abstract

Simulations are conducted using a microscale model framework to quantify differences in projected Annual Energy Production (AEP), Capacity Factor (CF) and wake losses for large offshore wind farms that arise due to different input datasets, installed capacity density (ICD) and/or wake parameterizations. Differences in CF (and AEP) and wake losses that arise due to the selection of the wake parameterization have the same magnitude as varying the ICD within the likely range of 2–9 MW km −2 . CF simulated with most wake parameterizations have a near-linear relationship with ICD in this range, and the slope of the dependency on ICD is similar to that in mesoscale simulations with the Weather Research and Forecasting (WRF) model. Microscale simulations show that remotely generated wakes can double AEP losses in individual lease areas (LA) within a large LA cluster. Finally, simulations with the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model are shown to differ in terms of wake-induced AEP reduction from those with the WRF model by up to 5%, but this difference is smaller than differences in CF caused by the wind farm parameterization used in the mesoscale modeling. Enhanced evaluation of mesoscale and microscale wake parameterizations against observations of climatological representative AEP and time-varying power production from wind farm Supervisory Control and Data Acquisition (SCADA) data remains critical to improving the accuracy of predictive AEP modeling for large offshore wind farms.

Suggested Citation

  • Rebecca J. Barthelmie & Kelsey B. Thompson & Sara C. Pryor, 2025. "Factors Impacting Projected Annual Energy Production from Offshore Wind Farms on the US East and West Coasts," Energies, MDPI, vol. 18(15), pages 1-34, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4037-:d:1712705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4037/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4037/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Porchetta, Sara & Muñoz-Esparza, Domingo & Munters, Wim & van Beeck, Jeroen & van Lipzig, Nicole, 2021. "Impact of ocean waves on offshore wind farm power production," Renewable Energy, Elsevier, vol. 180(C), pages 1179-1193.
    2. Warder, Simon C. & Piggott, Matthew D., 2025. "The future of offshore wind power production: Wake and climate impacts," Applied Energy, Elsevier, vol. 380(C).
    3. Pryor, Sara C. & Barthelmie, Rebecca J., 2024. "Wind shadows impact planning of large offshore wind farms," Applied Energy, Elsevier, vol. 359(C).
    4. Rebecca J. Barthelmie & Gunner C. Larsen & Sara C. Pryor, 2023. "Modeling Annual Electricity Production and Levelized Cost of Energy from the US East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 16(12), pages 1-29, June.
    5. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    7. Michael F. Howland & Jesús Bas Quesada & Juan José Pena Martínez & Felipe Palou Larrañaga & Neeraj Yadav & Jasvipul S. Chawla & Varun Sivaram & John O. Dabiri, 2022. "Collective wind farm operation based on a predictive model increases utility-scale energy production," Nature Energy, Nature, vol. 7(9), pages 818-827, September.
    8. Sun, Jili & Yang, Jingqing & Jiang, Zezhong & Xu, JinFeng & Meng, Xiaofei & Feng, Xiaoguang & Si, Yulin & Zhang, Dahai, 2024. "Wake redirection control for offshore wind farm power and fatigue multi-objective optimisation based on a wind turbine load indicator," Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Rasiński & Ziemowit Malecha, 2025. "Wake Losses, Productivity, and Cost Analysis of a Polish Offshore Wind Farm in the Baltic Sea," Energies, MDPI, vol. 18(15), pages 1-21, August.
    2. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    3. Göçmen, Tuhfe & Liew, Jaime & Kadoche, Elie & Dimitrov, Nikolay & Riva, Riccardo & Andersen, Søren Juhl & Lio, Alan W.H. & Quick, Julian & Réthoré, Pierre-Elouan & Dykes, Katherine, 2025. "Data-driven wind farm flow control and challenges towards field implementation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    4. Sara C. Pryor & Rebecca J. Barthelmie, 2024. "Power Production, Inter- and Intra-Array Wake Losses from the U.S. East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 17(5), pages 1-30, February.
    5. Ouro, Pablo & Ghobrial, Mina & Ali, Karim & Stallard, Tim, 2025. "Numerical modelling of offshore wind-farm cluster wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    6. Adam Zagubień & Katarzyna Wolniewicz & Jakub Szwochertowski, 2024. "Analysis of Wind Farm Productivity Taking Wake Loss into Account: Case Study," Energies, MDPI, vol. 17(23), pages 1-14, November.
    7. Warder, Simon C. & Piggott, Matthew D., 2025. "The future of offshore wind power production: Wake and climate impacts," Applied Energy, Elsevier, vol. 380(C).
    8. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    9. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.
    10. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    11. Jiufa Cao & Weijun Zhu & Xinbo Wu & Tongguang Wang & Haoran Xu, 2018. "An Aero-acoustic Noise Distribution Prediction Methodology for Offshore Wind Farms," Energies, MDPI, vol. 12(1), pages 1-16, December.
    12. Balakrishnan, Raj Kiran & Son, Eunkuk & Hur, Sung-ho, 2024. "Optimization of wind farm power output using wake redirection control," Renewable Energy, Elsevier, vol. 235(C).
    13. Jaime Liew & Kirby S. Heck & Michael F. Howland, 2024. "Unified momentum model for rotor aerodynamics across operating regimes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    15. Shin, Heesoo & Rüttgers, Mario & Lee, Sangseung, 2023. "Effects of spatiotemporal correlations in wind data on neural network-based wind predictions," Energy, Elsevier, vol. 279(C).
    16. Larsén, Xiaoli Guo & Fischereit, Jana & Hamzeloo, Sima & Bärfuss, Konrad & Lampert, Astrid, 2024. "Investigation of wind farm impacts on surface waves using coupled numerical simulations," Renewable Energy, Elsevier, vol. 237(PC).
    17. Kuichao Ma & Jiaxin Zou & Qingyang Fan & Xiaodong Wang & Wei Zhang & Wei Fan, 2024. "Wind Turbine Wake Regulation Method Coupling Actuator Model and Engineering Wake Model," Energies, MDPI, vol. 17(23), pages 1-19, November.
    18. Castorrini, Alessio & Gentile, Sabrina & Geraldi, Edoardo & Bonfiglioli, Aldo, 2023. "Investigations on offshore wind turbine inflow modelling using numerical weather prediction coupled with local-scale computational fluid dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Yildiz, Anil & Mern, John & Kochenderfer, Mykel J. & Howland, Michael F., 2023. "Towards sequential sensor placements on a wind farm to maximize lifetime energy and profit," Renewable Energy, Elsevier, vol. 216(C).
    20. Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4037-:d:1712705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.