IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3958-d1709182.html
   My bibliography  Save this article

Hydrogen Energy Storage via Carbon-Based Materials: From Traditional Sorbents to Emerging Architecture Engineering and AI-Driven Optimization

Author

Listed:
  • Han Fu

    (NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA)

  • Amin Mojiri

    (NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA)

  • Junli Wang

    (NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA)

  • Zhe Zhao

    (NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
    Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA)

Abstract

Hydrogen is widely recognized as a key enabler of the clean energy transition, but the lack of safe, efficient, and scalable storage technologies continues to hinder its broad deployment. Conventional hydrogen storage approaches, such as compressed hydrogen storage, cryo-compressed hydrogen storage, and liquid hydrogen storage, face limitations, including high energy consumption, elevated cost, weight, and safety concerns. In contrast, solid-state hydrogen storage using carbon-based adsorbents has gained growing attention due to their chemical tunability, low cost, and potential for modular integration into energy systems. This review provides a comprehensive evaluation of hydrogen storage using carbon-based materials, covering fundamental adsorption mechanisms, classical materials, emerging architectures, and recent advances in computationally AI-guided material design. We first discuss the physicochemical principles driving hydrogen physisorption, chemisorption, Kubas interaction, and spillover effects on carbon surfaces. Classical adsorbents, such as activated carbon, carbon nanotubes, graphene, carbon dots, and biochar, are evaluated in terms of pore structure, dopant effects, and uptake capacity. The review then highlights recent progress in advanced carbon architectures, such as MXenes, three-dimensional architectures, and 3D-printed carbon platforms, with emphasis on their gravimetric and volumetric performance under practical conditions. Importantly, this review introduces a forward-looking perspective on the application of artificial intelligence and machine learning tools for data-driven sorbent design. These methods enable high-throughput screening of materials, prediction of performance metrics, and identification of structure–property relationships. By combining experimental insights with computational advances, carbon-based hydrogen storage platforms are expected to play a pivotal role in the next generation of energy storage systems. The paper concludes with a discussion on remaining challenges, utilization scenarios, and the need for interdisciplinary efforts to realize practical applications.

Suggested Citation

  • Han Fu & Amin Mojiri & Junli Wang & Zhe Zhao, 2025. "Hydrogen Energy Storage via Carbon-Based Materials: From Traditional Sorbents to Emerging Architecture Engineering and AI-Driven Optimization," Energies, MDPI, vol. 18(15), pages 1-36, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3958-:d:1709182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Hung Vo Thanh & Sajad Ebrahimnia Taremsari & Benyamin Ranjbar & Hossein Mashhadimoslem & Ehsan Rahimi & Mohammad Rahimi & Ali Elkamel, 2023. "Hydrogen Storage on Porous Carbon Adsorbents: Rediscovery by Nature-Derived Algorithms in Random Forest Machine Learning Model," Energies, MDPI, vol. 16(5), pages 1-19, February.
    3. Shi, Tao & Xu, Huijin, 2022. "Integration of hydrogen storage and heat storage in thermochemical reactors enhanced with optimized topological structures: Charging process," Applied Energy, Elsevier, vol. 327(C).
    4. Kayikci, Yasanur & Ali, Md. Ramjan & Khan, Sharfuddin Ahmed & Ikpehai, Augustine, 2025. "Examining dynamics of hydrogen supply chains," Technological Forecasting and Social Change, Elsevier, vol. 215(C).
    5. Zach Free & Maya Hernandez & Mustafa Mashal & Kunal Mondal, 2021. "A Review on Advanced Manufacturing for Hydrogen Storage Applications," Energies, MDPI, vol. 14(24), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Longfei & Lin, Xi & Yang, Xue & Zhao, Yingyan & Zhang, Jiaqi & Cheng, Tao & Zou, Jianxin, 2025. "Magnesium-based hydrogen storage tanks: A review of research, development and simulation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    2. Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    3. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    4. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    5. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    6. Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. dos Reis, Rui A. & Rangel, Gustavo P. & Neto, Belmira, 2024. "Social life cycle assessment of green hydrogen production: Evaluating a projected Portuguese industrial production plant," Renewable Energy, Elsevier, vol. 235(C).
    8. Srilakshmi Jeyaraman & Dmitri L. Danilov & Peter H. L. Notten & Udaya Bhaskar Reddy Ragula & Vaira Vignesh Ramalingam & Thirugnasambandam G. Manivasagam, 2025. "Influence of Ni and Nb Addition in TiVCr-Based High Entropy Alloys for Room-Temperature Hydrogen Storage," Energies, MDPI, vol. 18(15), pages 1-19, July.
    9. Gür, Turgut M., 2024. "Giga-ton and tera-watt scale challenges at the energy - climate crossroads: A global perspective," Energy, Elsevier, vol. 290(C).
    10. Liufei Shen & Cheng Zhang & Feiyue Shan & Long Chen & Shuai Liu & Zhiqiang Zheng & Litong Zhu & Jinduo Wang & Xingzheng Wu & Yujia Zhai, 2024. "Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power," Energies, MDPI, vol. 18(1), pages 1-17, December.
    11. Barbara Uliasz-Misiak & Jacek Misiak & Radosław Tarkowski, 2025. "Research Trends in Underground Hydrogen Storage: A Bibliometric Approach," Energies, MDPI, vol. 18(7), pages 1-23, April.
    12. Cao, Ruifeng & Li, Weiqiang & Chen, Ziqi & Li, Yawei, 2024. "Development and assessment of a novel isobaric compressed hydrogen energy storage system integrated with pumped hydro storage and high-pressure proton exchange membrane water electrolyzer," Energy, Elsevier, vol. 294(C).
    13. Lu, Tianguang & Yi, Xinning & Li, Jing & Wu, Shaocong, 2025. "Collaborative planning of integrated hydrogen energy chain multi-energy systems: A review," Applied Energy, Elsevier, vol. 393(C).
    14. Cao, Qiang & Chen, Yuji & Wang, Zhiping & Wang, Miaomiao & Wang, Pengcheng & Ge, Lichun & Li, Peng & Zhao, Qinyu & Wang, Bo & Gan, Zhihua, 2025. "Improving the cooling efficiency of cryo-compressed hydrogen based on the temperature-distributed method in regenerative refrigerators," Energy, Elsevier, vol. 314(C).
    15. Sleiti, Ahmad K. & Al-Ammari, Wahib A. & Musharavati, Farayi, 2024. "Novel integrated system for power, hydrogen, and ammonia production using direct oxy-combustion sCO2 power cycle with automatic CO2 capture, water electrolyzer, and Haber-Bosch process," Energy, Elsevier, vol. 307(C).
    16. Stucchi, Leonardo & Bocchiola, Daniele & Simoni, Camilla & Ambrosini, Stefano Romano & Bianchi, Alberto & Rosso, Renzo, 2023. "Future hydropower production under the framework of NextGenerationEU: The case of Santa Giustina reservoir in Italian Alps," Renewable Energy, Elsevier, vol. 215(C).
    17. Ahmed I. Osman & Mahmoud Nasr & A. R. Mohamed & Amal Abdelhaleem & Ali Ayati & Mohamed Farghali & Ala'a H. Al‐Muhtaseb & Ahmed S. Al‐Fatesh & David W. Rooney, 2024. "Life cycle assessment of hydrogen production, storage, and utilization toward sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(3), May.
    18. Elsir, Mohamed & Al-Sumaiti, Ameena Saad, 2025. "A holistic risk-aware coordinated framework for coupled hydrogen transport, LOHC storage, and rich renewable grid optimization," Applied Energy, Elsevier, vol. 392(C).
    19. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Zhang, Jibao & Li, Yan & Rao, Yizhi & Li, Yang & He, Tianbiao & Linga, Praveen & Wang, Xiaolin & Chen, Qian & Yin, Zhenyuan, 2024. "Probing the pathway of H2-THF and H2-DIOX sII hydrates formation: Implication on hydrate-based H2 storage," Applied Energy, Elsevier, vol. 376(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3958-:d:1709182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.