IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3930-d1708197.html
   My bibliography  Save this article

The Influence of Variable Operating Conditions and Components on the Performance of Centrifugal Compressors in Natural Gas Storage Reservoirs

Author

Listed:
  • Hua Chen

    (Zhongyou Liaohe Engineering Co., Ltd., Panjin 124010, China)

  • Gang Li

    (Zhongyou Liaohe Engineering Co., Ltd., Panjin 124010, China)

  • Shengping Wang

    (Liaohe Oilfield (Panjin) Gas Storage Co., Ltd., Panjin 124200, China)

  • Ning Wang

    (Zhongyou Liaohe Engineering Co., Ltd., Panjin 124010, China)

  • Lifeng Zhou

    (Zhongyou Liaohe Engineering Co., Ltd., Panjin 124010, China)

  • Hao Zhou

    (Zhongyou Liaohe Engineering Co., Ltd., Panjin 124010, China)

  • Yukang Sun

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Lijun Liu

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The inlet operating conditions of centrifugal compressors in natural gas storage reservoirs, as well as the natural gas composition, continuously vary over time, significantly impacting compressor performance. To analyze the influence of these factors on centrifugal compressors, a method for converting the performance curves of centrifugal compressors under actual operating conditions has been established. This performance conversion process is implemented through a custom-developed program, which incorporates the polytropic index and exhaust temperature calculations. Verification results show that the conversion error of this method is within 2%. Based on the proposed performance prediction method for non-similar operating conditions, the effects of varying inlet temperatures, pressures, and natural gas compositions on compressor performance are investigated. It is observed that an increase in inlet temperature results in a decrease in compressor power and pressure ratio; an increase in inlet pressure leads to higher power consumption, while the pressure ratio varies with the flow rate at the operating point; and as the average molar mass of natural gas decreases, both the pressure ratio and power exhibit a certain degree of reduction.

Suggested Citation

  • Hua Chen & Gang Li & Shengping Wang & Ning Wang & Lifeng Zhou & Hao Zhou & Yukang Sun & Lijun Liu, 2025. "The Influence of Variable Operating Conditions and Components on the Performance of Centrifugal Compressors in Natural Gas Storage Reservoirs," Energies, MDPI, vol. 18(15), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3930-:d:1708197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiong, Zhiyi & Liu, Yuhui & Cai, Yongjun & Chang, Weichun & Wang, Ziqiang & Li, Zhenlin & Peng, Shiyao, 2025. "Research on the effect of green hydrogen blending on natural gas centrifugal compressor performance," Renewable Energy, Elsevier, vol. 242(C).
    2. Yintao Wang & Jin Yan, 2024. "Study of Performance Changes in Centrifugal Compressors Working in Different Refrigerants," Energies, MDPI, vol. 17(11), pages 1-17, June.
    3. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    4. Hosik Jeong & Kanghyuk Ko & Junsung Kim & Jongsoo Kim & Seongyong Eom & Sangkyung Na & Gyungmin Choi, 2024. "Evaluation of Prediction Model for Compressor Performance Using Artificial Neural Network Models and Reduced-Order Models," Energies, MDPI, vol. 17(15), pages 1-12, July.
    5. Ma, Xiaojuan & Wu, Xinghong & Wu, Yan & Wang, Yufei, 2023. "Energy system design of offshore natural gas hydrates mining platforms considering multi-period floating wind farm optimization and production profile fluctuation," Energy, Elsevier, vol. 265(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirchbacher, Florian & Biegger, Philipp & Miltner, Martin & Lehner, Markus & Harasek, Michael, 2018. "A new methanation and membrane based power-to-gas process for the direct integration of raw biogas – Feasability and comparison," Energy, Elsevier, vol. 146(C), pages 34-46.
    2. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    3. Andrea Amado & Koji Kotani & Makoto Kakinaka & Shunsuke Managi, 2023. "Carbon tax for cleaner-energy transition: A vignette experiment in Japan," Working Papers SDES-2023-6, Kochi University of Technology, School of Economics and Management, revised Oct 2023.
    4. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    5. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    6. Oluwatayo Babatope Ojo & Abdelrahman Hegab & Pericles Pilidis, 2025. "Impact of Compressor Station Availability on the Techno-Economics of Natural Gas Pipeline Transportation," Energies, MDPI, vol. 18(16), pages 1-28, August.
    7. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    8. Lukas Wienholt & Ulf Philipp Müller & Julian Bartels, 2018. "Optimal Sizing and Spatial Allocation of Storage Units in a High-Resolution Power System Model," Energies, MDPI, vol. 11(12), pages 1-17, December.
    9. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    11. Machado, Renato Haddad Simões & Rego, Erik Eduardo & Udaeta, Miguel Edgar Morales & Nascimento, Viviane Tavares, 2022. "Estimating the adequacy revenue considering long-term reliability in a renewable power system," Energy, Elsevier, vol. 243(C).
    12. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    13. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    14. Saleem, M.I. & Saha, S. & Izhar, U. & Ang, L., 2024. "Bi-Layer Model Predictive Control strategy for techno-economic operation of grid-connected microgrids," Renewable Energy, Elsevier, vol. 236(C).
    15. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    16. Han, Rui & Xing, Shuang & Wu, Xueqian & Pang, Caihong & Lu, Shuangchun & Su, Yun & Liu, Qingling & Song, Chunfeng & Gao, Jihui, 2022. "Relevant influence of alkali carbonate doping on the thermochemical energy storage of Ca-based natural minerals during CaO/CaCO3 cycles," Renewable Energy, Elsevier, vol. 181(C), pages 267-277.
    17. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    18. Mohamed A Mohamed & Ali M Eltamaly & Abdulrahman I Alolah, 2016. "PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    19. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    20. Muhammad Sadam Hussain & Kangwook Cho & Soo-jin Park, 2024. "Resource Adequacy and Integration of Renewables in Light of US, EU, and Pakistan’s Evolving Power Sector," Energies, MDPI, vol. 17(20), pages 1-45, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3930-:d:1708197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.