IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3914-d1707591.html
   My bibliography  Save this article

Performance and Environmental Assessment of Palm Oil–Coffee Husk Biodiesel Blends in a Dual-Fuel Diesel Engine Operating with Hydroxy

Author

Listed:
  • Jovanny Rafael Duque

    (Departamento de Energía, Universidad de la Costa CUC, Calle 58 Número 55-66, Barranquilla 080002, Atlántico, Colombia
    Facultad de Ingeniería, Institución Universitaria de Barranquilla, Cra. 45 Número 48-31, Barranquilla 080002, Atlántico, Colombia)

  • Fabio Bermejo-Altamar

    (Departamento de Energía, Universidad de la Costa CUC, Calle 58 Número 55-66, Barranquilla 080002, Atlántico, Colombia)

  • Jorge Duarte-Forero

    (KAI Research Unit, Department of Mechanical Engineering, Universidad del Atlántico, Carrera 30 Número 8–49, Puerto Colombia 081001, Atlántico, Colombia)

  • Brando Hernández-Comas

    (Departamento de Energía, Universidad de la Costa CUC, Calle 58 Número 55-66, Barranquilla 080002, Atlántico, Colombia)

Abstract

This research analyzes the influence of hydroxy on pure diesel and blends of palm oil and coffee husk biodiesel with percentages of 15% and 20%. The experimental tests were carried out in a stationary diesel engine, where the torque and speed varied from 3–7 Nm and 3000–3600 rpm. Hydroxy was used as a secondary fuel with a volumetric flow injection of 4 and 8 lpm. The injection of hydroxy can reduce the BSFC and increase the BTE of the engine when running on pure diesel and biodiesel blends. The results show a maximum decrease of 11.66%, 11.28%, and 10.94% in BSFC when hydroxy is injected into D100, D85P10C5, and D80P10C10 fuels. In the case of BTE, maximum increases of 13.37%, 12.84%, and 12.34% were obtained for the above fuels. The fuels D100 + 8 lpm, D85P10C5 + 8 lpm, and D80P10C10 + 8 lpm achieved maximum energy efficiencies of 28.16%, 27.58%, and 27.32%, respectively. In the case of exergy efficiency, maximum values of 26.39%, 25.83%, and 25.58% were obtained. The environmental and social costs of CO, CO 2 , and HC emissions are significantly reduced with the addition of hydroxy in pure diesel and biodiesel blends from palm oil and coffee husk. The injection of a volumetric flow rate of 8 l/min results in reductions of 11.66%, 10.61%, and 10.94% in operational cost when the engine is fueled with D100, D85P10C5, and D80P10C10, respectively, complying with standards essential for safe engine operation. In general, the research conducted indicates that hydroxy injection is a viable alternative for reducing fuel consumption and improving engine efficiency when using biodiesel blends made from palm oil and coffee husk.

Suggested Citation

  • Jovanny Rafael Duque & Fabio Bermejo-Altamar & Jorge Duarte-Forero & Brando Hernández-Comas, 2025. "Performance and Environmental Assessment of Palm Oil–Coffee Husk Biodiesel Blends in a Dual-Fuel Diesel Engine Operating with Hydroxy," Energies, MDPI, vol. 18(15), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3914-:d:1707591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gurusamy, Manikandaraja & Subramaniyan, Malarmannan & Subramaniyan, Balaji, 2024. "Assessment of hydrogen and diethyl ether enrichment on CI engine operating with binary blend of jatropha and camphor oil using response surface methodology," Energy, Elsevier, vol. 289(C).
    2. Raju, Pradeep & Masimalai, Senthil Kumar & Ganesan, Nataraj & Karthic, S.V., 2020. "Engine’s behavior on hydrogen addition of waste cooking oil fueled light duty diesel engine - A dual fuel approach," Energy, Elsevier, vol. 194(C).
    3. Guillermo Valencia Ochoa & Carlos Acevedo Peñaloza & Jorge Duarte Forero, 2019. "Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine," Energies, MDPI, vol. 12(21), pages 1-21, October.
    4. Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
    5. Mulkan, Andi & Mohd Zulkifli, Nurin Wahidah & Husin, Husni & Ahmadi, & Dahlan, Irvan, 2024. "Performance and emissions assessment under full load operation of an unmodified diesel engine running on biodiesel-based waste cooking oil synthesized using JPW solid catalyst," Renewable Energy, Elsevier, vol. 224(C).
    6. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    7. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Bhuiya, M.M.K., 2016. "Recent development of biodiesel combustion strategies and modelling for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1068-1086.
    8. Tesfa, B. & Mishra, R. & Gu, F. & Ball, A.D., 2012. "Water injection effects on the performance and emission characteristics of a CI engine operating with biodiesel," Renewable Energy, Elsevier, vol. 37(1), pages 333-344.
    9. Zhiyue Mu & Jianqin Fu & Feng Zhou & Kainan Yuan & Juan Yu & Dan Huang & Zhuangping Cui & Xiongbo Duan & Jingping Liu, 2023. "A Comparatively Experimental Study on the Performance and Emission Characteristics of a Diesel Engine Fueled with Tung Oil-Based Biodiesel Blends (B10, B20, B50)," Energies, MDPI, vol. 16(14), pages 1-15, July.
    10. Ade Suhara & Karyadi & Safarudin Gazali Herawan & Andy Tirta & Muhammad Idris & Muhammad Faizullizam Roslan & Nicky Rahmana Putra & April Lia Hananto & Ibham Veza, 2024. "Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel," Clean Technol., MDPI, vol. 6(3), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Leal Silva, Jean Felipe & Nogueira, Luiz Augusto Horta & Cantarella, Heitor & Rossetto, Raffaella & Maciel Filho, Rubens & Souza, Glaucia Mendes, 2025. "Meta-data analysis of biofuels in emerging markets of Africa and Asia: Greenhouse gas savings and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    4. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    5. Aqian Li & Zhaolei Zheng, 2020. "Effect of Spark Ignition Timing and Water Injection Temperature on the Knock Combustion of a GDI Engine," Energies, MDPI, vol. 13(18), pages 1-24, September.
    6. Dora Villada-Castillo & Guillermo Valencia-Ochoa & Jorge Duarte-Forero, 2023. "Thermohydraulic and Economic Evaluation of a New Design for Printed Circuit Heat Exchangers in Supercritical CO 2 Brayton Cycle," Energies, MDPI, vol. 16(5), pages 1-24, February.
    7. Şahin, Zehra & Aksu, Orhan N., 2015. "Experimental investigation of the effects of using low ratio n-butanol/diesel fuel blends on engine performance and exhaust emissions in a turbocharged DI diesel engine," Renewable Energy, Elsevier, vol. 77(C), pages 279-290.
    8. Jovana Radulovic, 2023. "Organic Rankine Cycle: Effective Applications and Technological Advances," Energies, MDPI, vol. 16(5), pages 1-3, February.
    9. Arun Teja Doppalapudi & Abul Kalam Azad & Mohammad Masud Kamal Khan, 2023. "Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine," Energies, MDPI, vol. 16(6), pages 1-18, March.
    10. Raju, Pradeep & Masimalai, Senthil Kumar & Ganesan, Nataraj & Karthic, S.V., 2020. "Engine’s behavior on hydrogen addition of waste cooking oil fueled light duty diesel engine - A dual fuel approach," Energy, Elsevier, vol. 194(C).
    11. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    12. Groppi, Daniele & Pastore, Lorenzo Mario & Nastasi, Benedetto & Prina, Matteo Giacomo & Astiaso Garcia, Davide & de Santoli, Livio, 2025. "Energy modelling challenges for the full decarbonisation of hard-to-abate sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    13. Romualdas Juknelevičius & Alfredas Rimkus & Saugirdas Pukalskas & Stanislaw Szwaja, 2021. "Investigation of Performance and Emission Parameters of Hydroxygen (HHO)-Enriched Diesel Fuel with Water Injection in the Compression Ignition Engine," Clean Technol., MDPI, vol. 3(3), pages 1-26, July.
    14. Naderi, Alireza & Qasemian, Ali & Shojaeefard, Mohammad Hasan & Samiezadeh, Saman & Younesi, Mostafa & Sohani, Ali & Hoseinzadeh, Siamak, 2021. "A smart load-speed sensitive cooling map to have a high- performance thermal management system in an internal combustion engine," Energy, Elsevier, vol. 229(C).
    15. Yew Heng Teoh & Hishammudin Afifi Huspi & Heoy Geok How & Farooq Sher & Zia Ud Din & Thanh Danh Le & Huu Tho Nguyen, 2021. "Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    16. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    17. Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
    18. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    19. Taghavifar, Hadi & Mazari, Farhad, 2022. "1D diesel engine cycle modeling integrated with MOPSO optimization for improved NOx control and pressure boost," Energy, Elsevier, vol. 247(C).
    20. Guillermo Valencia Ochoa & Cesar Isaza-Roldan & Jorge Duarte Forero, 2020. "Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-22, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3914-:d:1707591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.