IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3881-d1706376.html
   My bibliography  Save this article

Approaches to Proxy Modeling of Gas Reservoirs

Author

Listed:
  • Alexander Perepelkin

    (Center for Information Technologies, Connection and Automation, Gazprom VNIIGAZ LLC, 195112 Saint Petersburg, Russia)

  • Anar Sharifov

    (Center for Information Technologies, Connection and Automation, Gazprom VNIIGAZ LLC, 195112 Saint Petersburg, Russia)

  • Daniil Titov

    (Center for Information Technologies, Connection and Automation, Gazprom VNIIGAZ LLC, 195112 Saint Petersburg, Russia)

  • Zakhar Shandrygolov

    (Center for Information Technologies, Connection and Automation, Gazprom VNIIGAZ LLC, 195112 Saint Petersburg, Russia)

  • Denis Derkach

    (AI and Digital Science Institute, National Research University Higher School of Economics, 101000 Moscow, Russia)

  • Shamil Islamov

    (Research and Development Department, Center for Engineering Technologies LLC, 121170 Moscow, Russia)

Abstract

In the gas industry, accurate forecasting of gas production is critical for optimizing well operating conditions. Although traditional hydrodynamic models offer high accuracy, they are often computationally intensive and time-consuming, prompting a growing interest in proxy-based alternatives. This study proposes a hybrid methodology based on Spatio-Temporal Graph Neural Networks (ST-GNNs) for gas production forecasting. The methodology integrates graph neural networks to account for spatial interdependencies between wells with recurrent and convolutional neural networks for time-series analysis. The model was validated using an extensive set of hydrodynamic simulation calculations and real-world field data. On average, the ST-GNN method reduces computational time by a factor of 4.3 compared to traditional hydrodynamic models, with a median predictive error not exceeding 10% across diverse datasets, despite variability in specific scenarios. The ST-GNN framework demonstrates promising potential as a tool for operational and strategic planning.

Suggested Citation

  • Alexander Perepelkin & Anar Sharifov & Daniil Titov & Zakhar Shandrygolov & Denis Derkach & Shamil Islamov, 2025. "Approaches to Proxy Modeling of Gas Reservoirs," Energies, MDPI, vol. 18(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3881-:d:1706376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongkwon Han & Sunil Kwon, 2021. "Application of Machine Learning Method of Data-Driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs," Energies, MDPI, vol. 14(12), pages 1-24, June.
    2. Zekun Guo & Hongjun Wang & Xiangwen Kong & Li Shen & Yuepeng Jia, 2021. "Machine Learning-Based Production Prediction Model and Its Application in Duvernay Formation," Energies, MDPI, vol. 14(17), pages 1-17, September.
    3. Taiyu Jin & Yang Xia & Haolin Jiang, 2023. "A Physics-Informed Neural Network Approach for Surrogating a Numerical Simulation of Fractured Horizontal Well Production Prediction," Energies, MDPI, vol. 16(24), pages 1-21, December.
    4. Peyman Bahrami & Farzan Sahari Moghaddam & Lesley A. James, 2022. "A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering," Energies, MDPI, vol. 15(14), pages 1-32, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Weike & Gao, Jiaxin & Chen, Yuntian & Wang, Shengwei, 2024. "Bridging data barriers among participants: Assessing the potential of geoenergy through federated learning," Applied Energy, Elsevier, vol. 367(C).
    2. Bin Yang & Xin Zhu & Boan Wei & Minzhang Liu & Yifan Li & Zhihan Lv & Faming Wang, 2023. "Computer Vision and Machine Learning Methods for Heat Transfer and Fluid Flow in Complex Structural Microchannels: A Review," Energies, MDPI, vol. 16(3), pages 1-24, February.
    3. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
    4. Hai Wang & Shengnan Chen, 2023. "Insights into the Application of Machine Learning in Reservoir Engineering: Current Developments and Future Trends," Energies, MDPI, vol. 16(3), pages 1-11, January.
    5. Na Fang & Zhengguang Liu & Shilei Fan, 2025. "Short-Term Wind Power Prediction Method Based on CEEMDAN-VMD-GRU Hybrid Model," Energies, MDPI, vol. 18(6), pages 1-18, March.
    6. Anna Samnioti & Vassilis Gaganis, 2023. "Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part I," Energies, MDPI, vol. 16(16), pages 1-43, August.
    7. Utomo Pratama Iskandar & Masanori Kurihara, 2022. "Time-Series Forecasting of a CO 2 -EOR and CO 2 Storage Project Using a Data-Driven Approach," Energies, MDPI, vol. 15(13), pages 1-22, June.
    8. Alexey Dengaev & Vladimir Verbitsky & Olga Eremenko & Anna Novikova & Andrey Getalov & Boris Sargin, 2022. "Water-in-Oil Emulsions Separation Using a Controlled Multi-Frequency Acoustic Field at an Operating Facility," Energies, MDPI, vol. 15(17), pages 1-16, August.
    9. Han, Sun & Zhenghao, Meng & Meilin, Li & Xiaohui, Yang & Xiaoxue, Wang, 2023. "Global supply sustainability assessment of critical metals for clean energy technology," Resources Policy, Elsevier, vol. 85(PB).
    10. Mkhitar Ovsepian & Egor Lys & Alexander Cheremisin & Stanislav Frolov & Rustam Kurmangaliev & Eduard Usov & Vladimir Ulyanov & Dmitry Tailakov & Nikita Kayurov, 2023. "Testing the INSIM-FT Proxy Simulation Method," Energies, MDPI, vol. 16(4), pages 1-16, February.
    11. Lixia Kang & Wei Guo & Xiaowei Zhang & Yuyang Liu & Zhaoyuan Shao, 2022. "Differentiation and Prediction of Shale Gas Production in Horizontal Wells: A Case Study of the Weiyuan Shale Gas Field, China," Energies, MDPI, vol. 15(17), pages 1-13, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3881-:d:1706376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.