Study on the Solidification and Heat Release Characteristics of Flexible Heat Storage Filled with PCM Composite
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
- Yasmine Lalau & Sacha Rigal & Jean-Pierre Bédécarrats & Didier Haillot, 2024. "Latent Thermal Energy Storage System for Heat Recovery between 120 and 150 °C: Material Stability and Corrosion," Energies, MDPI, vol. 17(4), pages 1-17, February.
- Zhou, Guobing & Zhu, Maochuan & Xiang, Yutong, 2018. "Effect of percussion vibration on solidification of supercooled salt hydrate PCM in thermal storage unit," Renewable Energy, Elsevier, vol. 126(C), pages 537-544.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kutlu, Cagri & Su, Yuehong & Lyu, Qinghua & Riffat, Saffa, 2023. "Thermal management of using crystallization-controllable supercooled PCM in space heating applications for different heating profiles in the UK," Renewable Energy, Elsevier, vol. 206(C), pages 848-857.
- Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
- Fumey, Benjamin & Weber, Robert & Baldini, Luca, 2023. "Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process," Applied Energy, Elsevier, vol. 335(C).
- Li, T.X. & Xu, J.X. & Wu, D.L. & He, F. & Wang, R.Z., 2019. "High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating," Applied Energy, Elsevier, vol. 248(C), pages 406-414.
- Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "Application of an active PCM storage system into a building for heating/cooling load reduction," Energy, Elsevier, vol. 210(C).
- Daniel Chocontá Bernal & Edmundo Muñoz & Giovanni Manente & Adriano Sciacovelli & Hossein Ameli & Alejandro Gallego-Schmid, 2021. "Environmental Assessment of Latent Heat Thermal Energy Storage Technology System with Phase Change Material for Domestic Heating Applications," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
- Yang, Haibin & Bao, Xiaohua & Cui, Hongzhi & Lo, Tommy Y. & Chen, Xiangsheng, 2022. "Optimization of supercooling, thermal conductivity, photothermal conversion, and phase change temperature of sodium acetate trihydrate for thermal energy storage applications," Energy, Elsevier, vol. 254(PA).
- Englmair, Gerald & Moser, Christoph & Schranzhofer, Hermann & Fan, Jianhua & Furbo, Simon, 2019. "A solar combi-system utilizing stable supercooling of sodium acetate trihydrate for heat storage: Numerical performance investigation," Applied Energy, Elsevier, vol. 242(C), pages 1108-1120.
- Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
- Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Mazur, Natalia & Blijlevens, Melian A.R. & Ruliaman, Rick & Fischer, Hartmut & Donkers, Pim & Meekes, Hugo & Vlieg, Elias & Adan, Olaf & Huinink, Henk, 2023. "Revisiting salt hydrate selection for domestic heat storage applications," Renewable Energy, Elsevier, vol. 218(C).
- Wang, Yan & Sui, Jiahao & Xu, Zijie, 2022. "Preparation and characterization of CaCl2·6H2O based binary inorganic eutectic system for low temperature thermal energy storage," Energy, Elsevier, vol. 259(C).
- Gabriel Zsembinszki & Christian Orozco & Jaume Gasia & Tilman Barz & Johann Emhofer & Luisa F. Cabeza, 2020. "Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank," Energies, MDPI, vol. 13(6), pages 1-26, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3760-:d:1702542. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.