IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3700-d1700861.html
   My bibliography  Save this article

Spatiotemporal Variations and Driving Factors of Carbon Emissions Related to Energy Consumption in the Construction Industry of China

Author

Listed:
  • Yue Zhang

    (China Railway Academy Group Co., Ltd., Chengdu 610031, China)

  • Min Li

    (China Railway Academy Group Co., Ltd., Chengdu 610031, China)

  • Jiazhen Sun

    (China Railway Academy Group Co., Ltd., Chengdu 610031, China)

  • Jie Liu

    (China Railway Academy Group Co., Ltd., Chengdu 610031, China)

  • Yinsheng Wang

    (China Railway Academy Group Co., Ltd., Chengdu 610031, China)

  • Li Li

    (China Railway Academy Group Co., Ltd., Chengdu 610031, China)

  • Xin Xiong

    (School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610097, China)

Abstract

As a major contributor to energy consumption and carbon emissions, the low-carbon transformation of the construction industry is crucial for China to achieve its established carbon-emission reduction targets. Therefore, a systematic analysis of the spatial and temporal evolution trends and key drivers of carbon emissions in the construction industry is an important reference for the formulation of emission reduction policies in the industry and the promotion of green and low-carbon development. This study first estimated carbon emissions from direct and indirect energy consumption in China’s construction industry. Spatial and temporal variations in emissions were then analyzed using spatial autocorrelation and kernel density methods. Furthermore, an improved logarithmic mean Divisia index decomposition model, tailored to the characteristics of the construction industry, was applied to quantify the key driving factors. The results reveal that total carbon emissions follow an inverted U-shaped trend, with indirect carbon emissions—mainly from the production of cement and steel—being the dominant contributors. Emissions display a spatially uneven pattern: high in the east and south, low in the west and north, with the high-emission zone gradually expanding from the east to the central regions. Marked regional differences also exist in the evolution of emission intensity. Output intensity and energy intensity are identified as primary drivers of emissions, with their impact particularly prominent in the eastern region. These findings provide a quantitative basis and theoretical support for developing region-specific emission reduction policies, advancing the green and high-quality development of China’s construction industry.

Suggested Citation

  • Yue Zhang & Min Li & Jiazhen Sun & Jie Liu & Yinsheng Wang & Li Li & Xin Xiong, 2025. "Spatiotemporal Variations and Driving Factors of Carbon Emissions Related to Energy Consumption in the Construction Industry of China," Energies, MDPI, vol. 18(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3700-:d:1700861
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    2. Yao-Bin Liu & Wei-Feng Deng & Kang Luo & Ming-Yuan Tang, 2024. "Impact of Environmental Taxation on Financial Performance of Energy-Intensive Firms: The Role of Digital Transformation," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 60(3), pages 598-616, February.
    3. Zhongchun Xu & Hongqin Chen & Wei Song, 2024. "Spatial–Temporal Pattern of Urban Land Green Use Efficiency and Its Influencing Factors in Guizhou Province, China, Based on County Units," Land, MDPI, vol. 13(12), pages 1-24, December.
    4. Aili Xie & Lianhua Liu & Longyi Qin & Heng Liu, 2021. "Fuzzy Comprehensive Evaluation of Happiness Index of Nine Cities in Pearl River Delta Based on AHP," Journal of Mathematics, Hindawi, vol. 2021, pages 1-15, September.
    5. Dingjun Chang & Shuling Tang, 2024. "Research on Low-Carbon Building Development and Carbon Emission Control Based on Mathematical Models: A Case Study of Jiangsu Province," Energies, MDPI, vol. 17(18), pages 1-22, September.
    6. Liu, Guo & Li, Xiaohu & Tan, Yongtao & Zhang, Guomin, 2020. "Building green retrofit in China: Policies, barriers and recommendations," Energy Policy, Elsevier, vol. 139(C).
    7. Chen Li & Le Zhang & Qinyi Gu & Jia Guo & Yi Huang, 2022. "Spatio-Temporal Differentiation Characteristics and Urbanization Factors of Urban Household Carbon Emissions in China," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
    8. Yamei Chen & Chao Zhang, 2024. "Characteristics of Spatial–Temporal Evolution of Carbon Emissions from Land Use and Analysis of Influencing Factors in Hubao-Eyu Urban Agglomerations, China," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiantian Gu & Shuyu Liu & Xuefan Liu & Yujia Shan & Enyang Hao & Miaomiao Niu, 2023. "Evaluation of the Smart City and Analysis of Its Spatial–Temporal Characteristics in China: A Case Study of 26 Cities in the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 12(10), pages 1-23, September.
    2. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    3. Junlong Peng & Zhuo Su & Xiao Liu & Chongsen Ma, 2025. "Promoting Low-Carbonization in the Construction Supply Chain: Key Influencing Factors and Sustainable Practices," Sustainability, MDPI, vol. 17(8), pages 1-36, April.
    4. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    5. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    6. Marin Pellan & Denise Almeida & Mathilde Louërat & Guillaume Habert, 2024. "Integrating Consumption-Based Metrics into Sectoral Carbon Budgets to Enhance Sustainability Monitoring of Building Activities," Sustainability, MDPI, vol. 16(16), pages 1-25, August.
    7. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Mojtaba Ashour & Amir Mahdiyar & Syarmila Hany Haron, 2021. "A Comprehensive Review of Deterrents to the Practice of Sustainable Interior Architecture and Design," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    9. Wenchao Li & Jian Xu & Zhengming Wang & Jialiang Yang, 2020. "The impact of LCTI on China's low-carbon transformation from the spatial spillover perspective," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-11, November.
    10. Yeguan Yu, 2023. "The Impact of Financial System on Carbon Intensity: From the Perspective of Digitalization," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    11. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    13. Alberto Bezama & Jakob Hildebrandt & Daniela Thrän, 2021. "Integrating Regionalized Socioeconomic Considerations onto Life Cycle Assessment for Evaluating Bioeconomy Value Chains: A Case Study on Hybrid Wood–Concrete Ceiling Elements," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    14. Long Li & Yinting Li, 2022. "The Spatial Relationship between CO 2 Emissions and Economic Growth in the Construction Industry: Based on the Tapio Decoupling Model and STIRPAT Model," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    15. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    16. Xiaolong Gan & Kangkang Yan & Kexin Xie & Yongtao Tan, 2023. "The policy trajectory of green building development in China: A sequential and network analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(4), pages 2979-2996, August.
    17. Senchang Hu & Shaoyi Li & Xiangxin Meng & Yingzheng Peng & Wenzhe Tang, 2023. "Study on Regional Differences of Carbon Emission Efficiency: Evidence from Chinese Construction Industry," Energies, MDPI, vol. 16(19), pages 1-20, September.
    18. Ying Xie & Yisheng Liu, 2022. "Tripartite Evolutionary Game Analysis of Stakeholder Decision-Making Behavior in Energy-Efficient Retrofitting of Office Buildings," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    19. Karlsson, Ida & Rootzén, Johan & Johnsson, Filip, 2020. "Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    20. Yupei Lai & Yutong Li & Xinyi Feng & Tao Ma, 2022. "Green retrofit of existing residential buildings in China: An investigation on residents’ perceptions," Energy & Environment, , vol. 33(2), pages 332-353, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3700-:d:1700861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.