IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3641-d1698276.html
   My bibliography  Save this article

MCDM Optimization-Based Development of a Plus-Energy Microgrid Architecture for University Buildings and Smart Parking

Author

Listed:
  • Mahmoud Ouria

    (Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal)

  • Alexandre F. M. Correia

    (Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal)

  • Pedro Moura

    (Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal)

  • Paulo Coimbra

    (Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal)

  • Aníbal T. de Almeida

    (Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal)

Abstract

This paper presents a multi-criteria decision-making (MCDM) approach for optimizing a microgrid system to achieve Plus-Energy Building (PEB) performance at the University of Coimbra’s Electrical Engineering Department. Using Python 3.12.8, Rhino 7, and PVsyst 8.0.1, simulations considered architectural and visual constraints, with economic feasibility assessed through a TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) analysis. The system is projected to generate approximately 1 GWh annually, with a 98% probability of exceeding 1076 MWh based on Gaussian estimation. Consumption is estimated at 460 MWh, while a 3.8 MWh battery ensures up to 72 h of autonomy. Rooftop panels and green parking arrays, fixed at 13.5° and 59°, minimize visual impact while contributing a surplus of +160% energy injection (or a net surplus of +60% energy after self-consumption). Assuming a battery cost of EUR 200/kWh, each hour of energy storage for the building requires 61 kWh of extra capacity with a cost of 12,200 (EUR/hr.storage). Recognizing environmental variability, these figures represent cross-validated probabilistic estimates derived from both PVsyst and Monte Carlo simulation using Python, reinforcing confidence in system feasibility. A holistic photovoltaic optimization strategy balances technical, economic, and architectural factors, demonstrating the potential of PEBs as a sustainable energy solution for academic institutions.

Suggested Citation

  • Mahmoud Ouria & Alexandre F. M. Correia & Pedro Moura & Paulo Coimbra & Aníbal T. de Almeida, 2025. "MCDM Optimization-Based Development of a Plus-Energy Microgrid Architecture for University Buildings and Smart Parking," Energies, MDPI, vol. 18(14), pages 1-37, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3641-:d:1698276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3641/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3641/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3641-:d:1698276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.