Photovoltaic Power Forecasting Based on Variational Mode Decomposition and Long Short-Term Memory Neural Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Li, Jiaqian & Rao, Congjun & Gao, Mingyun & Xiao, Xinping & Goh, Mark, 2025. "Efficient calculation of distributed photovoltaic power generation power prediction via deep learning," Renewable Energy, Elsevier, vol. 246(C).
- Fu, Jiaqian & Sun, Yuying & Li, Yunhe & Wang, Wei & Wei, Wenzhe & Ren, Jinyang & Han, Shulun & Di, Haoran, 2025. "An investigation of photovoltaic power forecasting in buildings considering shadow effects: Modeling approach and SHAP analysis," Renewable Energy, Elsevier, vol. 245(C).
- Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Tang, Huadu & Kang, Fei & Li, Xinyu & Sun, Yong, 2025. "Short-term photovoltaic power prediction model based on feature construction and improved transformer," Energy, Elsevier, vol. 320(C).
- Jesús Polo & Nuria Martín-Chivelet & Miguel Alonso-Abella & Carlos Sanz-Saiz & José Cuenca & Marina de la Cruz, 2023. "Exploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods," Energies, MDPI, vol. 16(3), pages 1-12, February.
- Su-Chang Lim & Jun-Ho Huh & Seok-Hoon Hong & Chul-Young Park & Jong-Chan Kim, 2022. "Solar Power Forecasting Using CNN-LSTM Hybrid Model," Energies, MDPI, vol. 15(21), pages 1-17, November.
- VanDeventer, William & Jamei, Elmira & Thirunavukkarasu, Gokul Sidarth & Seyedmahmoudian, Mehdi & Soon, Tey Kok & Horan, Ben & Mekhilef, Saad & Stojcevski, Alex, 2019. "Short-term PV power forecasting using hybrid GASVM technique," Renewable Energy, Elsevier, vol. 140(C), pages 367-379.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Honglin Xue & Junwei Ma & Jianliang Zhang & Penghui Jin & Jian Wu & Feng Du, 2024. "Power Forecasting for Photovoltaic Microgrid Based on MultiScale CNN-LSTM Network Models," Energies, MDPI, vol. 17(16), pages 1-13, August.
- Habib, Md. Ahasan & Hossain, M.J., 2024. "Advanced feature engineering in microgrid PV forecasting: A fast computing and data-driven hybrid modeling framework," Renewable Energy, Elsevier, vol. 235(C).
- Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
- Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
- Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
- Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
- Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
- Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
- Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
- Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
- Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
- Cai Tao & Junjie Lu & Jianxun Lang & Xiaosheng Peng & Kai Cheng & Shanxu Duan, 2021. "Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network," Energies, MDPI, vol. 14(11), pages 1-16, May.
- Wang, Wenting & Guo, Yufeng & Yang, Dazhi & Zhang, Zili & Kleissl, Jan & van der Meer, Dennis & Yang, Guoming & Hong, Tao & Liu, Bai & Huang, Nantian & Mayer, Martin János, 2024. "Economics of physics-based solar forecasting in power system day-ahead scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Goutte, Stéphane & Klotzner, Klemens & Le, Hoang-Viet & von Mettenheim, Hans-Jörg, 2024.
"Forecasting photovoltaic production with neural networks and weather features,"
Energy Economics, Elsevier, vol. 139(C).
- Stéphane Goutte & Klemens Klotzner & Hoang Viet Le & Hans Jörg von Mettenheim, 2024. "Forecasting photovoltaic production with neural networks and weather features," Post-Print hal-04779953, HAL.
- Al-Dahidi, Sameer & Alrbai, Mohammad & Rinchi, Bilal & Alahmer, Hussein & Al-Ghussain, Loiy & Hayajneh, Hassan S. & Alahmer, Ali, 2025. "Techno-economic implications and cost of forecasting errors in solar PV power production using optimized deep learning models," Energy, Elsevier, vol. 323(C).
- Wang, Zhenya & Yao, Ligang & Cai, Yongwu & Zhang, Jun, 2020. "Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis," Renewable Energy, Elsevier, vol. 155(C), pages 1312-1327.
- Fouzi Harrou & Ying Sun & Bilal Taghezouit & Abdelkader Dairi, 2023. "Artificial Intelligence Techniques for Solar Irradiance and PV Modeling and Forecasting," Energies, MDPI, vol. 16(18), pages 1-5, September.
- Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3572-:d:1696269. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.