IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3566-d1696022.html
   My bibliography  Save this article

Bridging the Energy Divide: An Analysis of the Socioeconomic and Technical Factors Influencing Electricity Theft in Kinshasa, DR Congo

Author

Listed:
  • Patrick Kankonde

    (Department of Basic Sciences, Faculty of Polytechnic, University of Kinshasa, Kinshasa P.O. Box 255, Democratic Republic of the Congo
    Department of Electrical and Electronic Engineering Technology, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2024, South Africa)

  • Pitshou Bokoro

    (Department of Electrical and Electronic Engineering Technology, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 2024, South Africa)

Abstract

Electricity theft remains a persistent challenge, particularly in developing economies where infrastructure limitations and socioeconomic disparities contribute to illegal connections. This study analyzes the determinants influencing electricity theft in Kinshasa, the Democratic Republic of Congo, using a logistic regression model applied to 385 observations, which includes random bootstrapping sampling for enhanced stability and power analysis validation to confirm the adequacy of the sample size. The model achieved an AUC of 0.86, demonstrating strong discriminatory power, while the Hosmer–Lemeshow test ( p = 0.471) confirmed its robust fit. Our findings indicate that electricity supply quality, financial stress, tampering awareness, and billing transparency are key predictors of theft likelihood. Households experiencing unreliable service and economic hardship showed higher theft probability, while those receiving regular invoices and alternative legal energy solutions exhibited lower risk. Lasso regression was implemented to refine predictor selection, ensuring model efficiency. Based on these insights, a multifaceted policy approach—including grid modernization, prepaid billing systems, awareness campaigns, and regulatory enforcement—is recommended to mitigate electricity theft and promote sustainable energy access in urban environments.

Suggested Citation

  • Patrick Kankonde & Pitshou Bokoro, 2025. "Bridging the Energy Divide: An Analysis of the Socioeconomic and Technical Factors Influencing Electricity Theft in Kinshasa, DR Congo," Energies, MDPI, vol. 18(13), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3566-:d:1696022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Babar, Zainab & Jamil, Faisal & Haq, Wajiha, 2022. "Consumer's perception towards electricity theft: A case study of Islamabad and Rawalpindi using a path analysis," Energy Policy, Elsevier, vol. 169(C).
    2. Jamil, Faisal & Ahmad, Eatzaz, 2019. "Policy considerations for limiting electricity theft in the developing countries," Energy Policy, Elsevier, vol. 129(C), pages 452-458.
    3. Yiran Wang & Shuowei Jin & Ming Cheng, 2023. "A Convolution–Non-Convolution Parallel Deep Network for Electricity Theft Detection," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    4. Mileta Žarković & Goran Dobrić, 2024. "Artificial Intelligence for Energy Theft Detection in Distribution Networks," Energies, MDPI, vol. 17(7), pages 1-17, March.
    5. Baitong Zhai & Dongsheng Yang & Bowen Zhou & Guangdi Li, 2024. "Distribution System State Estimation Based on Power Flow-Guided GraphSAGE," Energies, MDPI, vol. 17(17), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Sandu, Suwin & Yang, Muyi & Phoumin, Han & Aghdam, Reza Fathollahzadeh & Shi, Xunpeng, 2021. "Assessment of accessible, clean and efficient energy systems: A statistical analysis of composite energy performance indices," Applied Energy, Elsevier, vol. 304(C).
    3. Daniel Leite & José Pessanha & Paulo Simões & Rodrigo Calili & Reinaldo Souza, 2020. "A Stochastic Frontier Model for Definition of Non-Technical Loss Targets," Energies, MDPI, vol. 13(12), pages 1-20, June.
    4. Muhammad Salman Saeed & Mohd Wazir Mustafa & Usman Ullah Sheikh & Touqeer Ahmed Jumani & Ilyas Khan & Samer Atawneh & Nawaf N. Hamadneh, 2020. "An Efficient Boosted C5.0 Decision-Tree-Based Classification Approach for Detecting Non-Technical Losses in Power Utilities," Energies, MDPI, vol. 13(12), pages 1-19, June.
    5. Nsabimana, René & Perelman, Sergio & Walheer, Barnabé & Mapapa, Mbangala, 2024. "Effectiveness and efficiency in access to reliable electricity: The case of East African countries," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    6. Gautier, Axel & Nsabimana, René & Walheer, Barnabé, 2023. "Quality performance gaps and minimal electricity losses in East Africa," Utilities Policy, Elsevier, vol. 82(C).
    7. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Losses: A Panel Data Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 281-286.
    8. Wabukala, Benard M. & Mukisa, Nicholas & Watundu, Susan & Bergland, Olvar & Rudaheranwa, Nichodemus & Adaramola, Muyiwa S., 2023. "Impact of household electricity theft and unaffordability on electricity security: A case of Uganda," Energy Policy, Elsevier, vol. 173(C).
    9. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Theft in Mexico," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 250-254.
    10. Fernando de Souza Savian & Julio Cezar Mairesse Siluk & Tai s Bisognin Garlet & Felipe Moraes do Nascimento & Jose Renes Pinheiro & Zita Vale, 2022. "Non-technical Losses in Brazil: Overview, Challenges, and Directions for Identification and Mitigation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 93-107, May.
    11. Marco Toledo-Orozco & Carlos Arias-Marin & Carlos Álvarez-Bel & Diego Morales-Jadan & Javier Rodríguez-García & Eddy Bravo-Padilla, 2021. "Innovative Methodology to Identify Errors in Electric Energy Measurement Systems in Power Utilities," Energies, MDPI, vol. 14(4), pages 1-23, February.
    12. Juliani Chico Piai Paiva & Sandra Maria Almeida Cordeiro & Kleverton Clóvis de Oliveira Saath & Gilberto de Martino Jannuzzi, 2024. "Improving the Expansion of Electricity Services Considering Affordability Issues: A Case Study in Brazilian Low-Income Households," Energies, MDPI, vol. 17(17), pages 1-14, August.
    13. Ahmad, Hafsa & Jamil, Faisal, 2024. "Investigating power outages in Pakistan," Energy Policy, Elsevier, vol. 189(C).
    14. Sajad Ali & Min Yongzhi & Wajid Ali, 2023. "Prevention and Detection of Electricity Theft of Distribution Network," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    15. Muhammad Salman Saeed & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Nawa A. Alshammari & Usman Ullah Sheikh & Touqeer Ahmed Jumani & Saifulnizam Bin Abd Khalid & Ilyas Khan, 2020. "Detection of Non-Technical Losses in Power Utilities—A Comprehensive Systematic Review," Energies, MDPI, vol. 13(18), pages 1-25, September.
    16. Babar, Zainab & Jamil, Faisal & Haq, Wajiha, 2022. "Consumer's perception towards electricity theft: A case study of Islamabad and Rawalpindi using a path analysis," Energy Policy, Elsevier, vol. 169(C).
    17. Nadeem, Ahmad & Arshad, Naveed, 2021. "A data-driven approach to reduce electricity theft in developing countries," Utilities Policy, Elsevier, vol. 73(C).
    18. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Qinyu Huang & Zhenli Tang & Xiaofeng Weng & Min He & Fang Liu & Mingfa Yang & Tao Jin, 2024. "A Novel Electricity Theft Detection Strategy Based on Dual-Time Feature Fusion and Deep Learning Methods," Energies, MDPI, vol. 17(2), pages 1-18, January.
    20. Hugo Brise o & Jessica Rubiano & Rodolfo Garc a & Omar Rojas, 2021. "Factors Associated with Electricity Losses in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 465-470.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3566-:d:1696022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.