IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10127-d1179995.html
   My bibliography  Save this article

A Convolution–Non-Convolution Parallel Deep Network for Electricity Theft Detection

Author

Listed:
  • Yiran Wang

    (School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Shuowei Jin

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Ming Cheng

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

Abstract

This paper proposes a novel convolution–non-convolution parallel deep network (CNCP)-based method for electricity theft detection. First, the load time series of normal residents and electricity thieves were analyzed and it was found that, compared with the load time series of electricity thieves, the normal residents’ load time series present more obvious periodicity in different time scales, e.g., weeks and years; second, the load times series were converted into 2D images according to the periodicity, and then electricity theft detection was considered as an image classification issue; third, a novel CNCP-based method was proposed in which two heterogeneous deep neural networks were used to capture the features of the load time series in different time scales, and the outputs were fused to obtain the detection result. Extensive experiments show that, compared with some state-of-the-art methods, the proposed method can greatly improve the performance of electricity theft detection.

Suggested Citation

  • Yiran Wang & Shuowei Jin & Ming Cheng, 2023. "A Convolution–Non-Convolution Parallel Deep Network for Electricity Theft Detection," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10127-:d:1179995
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    2. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    3. Simona-Vasilica Oprea & Adela Bâra & Florina Camelia Puican & Ioan Cosmin Radu, 2021. "Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    4. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    5. Song, Chunhe & Jing, Wei & Zeng, Peng & Rosenberg, Catherine, 2017. "An analysis on the energy consumption of circulating pumps of residential swimming pools for peak load management," Applied Energy, Elsevier, vol. 195(C), pages 1-12.
    6. Sajad Ali & Min Yongzhi & Wajid Ali, 2023. "Prevention and Detection of Electricity Theft of Distribution Network," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinyu Huang & Zhenli Tang & Xiaofeng Weng & Min He & Fang Liu & Mingfa Yang & Tao Jin, 2024. "A Novel Electricity Theft Detection Strategy Based on Dual-Time Feature Fusion and Deep Learning Methods," Energies, MDPI, vol. 17(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mobarak Abumohsen & Amani Yousef Owda & Majdi Owda, 2023. "Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms," Energies, MDPI, vol. 16(5), pages 1-31, February.
    2. Dong, Jingya & Song, Chunhe & Liu, Shuo & Yin, Huanhuan & Zheng, Hao & Li, Yuanjian, 2022. "Decentralized peer-to-peer energy trading strategy in energy blockchain environment: A game-theoretic approach," Applied Energy, Elsevier, vol. 325(C).
    3. Olszewski, Pawel & Arafeh, Jamal, 2018. "Parametric analysis of pumping station with parallel-configured centrifugal pumps towards self-learning applications," Applied Energy, Elsevier, vol. 231(C), pages 1146-1158.
    4. Hany Habbak & Mohamed Mahmoud & Mostafa M. Fouda & Maazen Alsabaan & Ahmed Mattar & Gouda I. Salama & Khaled Metwally, 2023. "Efficient One-Class False Data Detector Based on Deep SVDD for Smart Grids," Energies, MDPI, vol. 16(20), pages 1-28, October.
    5. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    7. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    8. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    9. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
    10. Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
    11. Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
    12. Yuping Zou & Rui Wu & Xuesong Tian & Hua Li, 2023. "Realizing the Improvement of the Reliability and Efficiency of Intelligent Electricity Inspection: IAOA-BP Algorithm for Anomaly Detection," Energies, MDPI, vol. 16(7), pages 1-15, March.
    13. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
    14. Farah Mohammad & Kashif Saleem & Jalal Al-Muhtadi, 2023. "Ensemble-Learning-Based Decision Support System for Energy-Theft Detection in Smart-Grid Environment," Energies, MDPI, vol. 16(4), pages 1-16, February.
    15. Alexandra-Nicoleta Ciucu-Durnoi & Margareta Stela Florescu & Camelia Delcea, 2023. "Envisioning Romania’s Path to Sustainable Development: A Prognostic Approach," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    16. Dongwei Yao & Xinwei Lu & Xiangyun Chao & Yongguang Zhang & Junhao Shen & Fanlong Zeng & Ziyan Zhang & Feng Wu, 2023. "Adaptive Equivalent Fuel Consumption Minimization Based Energy Management Strategy for Extended-Range Electric Vehicle," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    17. Elnour, Mariam & Fadli, Fodil & Himeur, Yassine & Petri, Ioan & Rezgui, Yacine & Meskin, Nader & Ahmad, Ahmad M., 2022. "Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Claeys, Robbert & Cleenwerck, Rémy & Knockaert, Jos & Desmet, Jan, 2023. "Stochastic generation of residential load profiles with realistic variability based on wavelet-decomposed smart meter data," Applied Energy, Elsevier, vol. 350(C).
    19. Murilo A. Souza & Hugo T. V. Gouveia & Aida A. Ferreira & Regina Maria de Lima Neta & Otoni Nóbrega Neto & Milde Maria da Silva Lira & Geraldo L. Torres & Ronaldo R. B. de Aquino, 2024. "Detection of Non-Technical Losses on a Smart Distribution Grid Based on Artificial Intelligence Models," Energies, MDPI, vol. 17(7), pages 1-16, April.
    20. Sepideh Radhoush & Maryam Bahramipanah & Hashem Nehrir & Zagros Shahooei, 2022. "A Review on State Estimation Techniques in Active Distribution Networks: Existing Practices and Their Challenges," Sustainability, MDPI, vol. 14(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10127-:d:1179995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.