IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3554-d1695384.html
   My bibliography  Save this article

Cryogenic Distribution System and Entropy-Based Analysis of Chosen Design Options for the Example of the Polish FEL Facility

Author

Listed:
  • Tomasz Banaszkiewicz

    (Department of Cryogenics and Aerospace Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Maciej Chorowski

    (Department of Cryogenics and Aerospace Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Paweł Duda

    (Department of Cryogenics and Aerospace Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland)

Abstract

The Polish Free-Electron Laser (PolFEL), which is currently under construction in the National Centre for Nuclear Research in Świerk near Warsaw, will comprise an electron gun and from four to six cryomodules, each accommodating two nine-cell TESLA RF superconducting resonant cavities. To cool the superconducting resonant cavities, the cryomodules will be supplied with superfluid helium at a temperature of 2 K. Other requirements regarding the cooling power of PolFEL result from the need to cool the power couplers for the accelerating cryomodules (5 K) and thermal shields, which limit the heat inleaks due to radiation (40–80 K). The machine will utilize several thermodynamic states of helium, including two-phase superfluid helium, supercritical helium, and low-pressure helium vapours. Supercritical helium will be supplied from a cryoplant by a cryogenic distribution system (CDS)—transfer line and valve boxes—where it will be thermodynamically transformed into a superfluid state. This article presents the architecture of the CDS, discusses several design solutions that could have been decided on with the use of second law analysis, and presents the design methodology of the chosen CDS elements.

Suggested Citation

  • Tomasz Banaszkiewicz & Maciej Chorowski & Paweł Duda, 2025. "Cryogenic Distribution System and Entropy-Based Analysis of Chosen Design Options for the Example of the Polish FEL Facility," Energies, MDPI, vol. 18(13), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3554-:d:1695384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Haoran & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2022. "Multi-objective optimization of Stirling heat engine with various heat and mechanical losses," Energy, Elsevier, vol. 256(C).
    2. Bejan, Adrian, 1980. "Second law analysis in heat transfer," Energy, Elsevier, vol. 5(8), pages 720-732.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    2. Khaliq, Abdul, 2004. "Thermodynamic optimization of laminar viscous flow under convective heat-transfer through an isothermal walled duct," Applied Energy, Elsevier, vol. 78(3), pages 289-304, July.
    3. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    4. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    5. Srinivasacharya, D. & Bindu, K. Hima, 2016. "Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions," Energy, Elsevier, vol. 111(C), pages 165-177.
    6. Prajapati, Parth & Patel, Vivek & Raja, Bansi D. & Jouhara, Hussam, 2023. "Multi objective ecological optimization of an irreversible Stirling cryogenic refrigerator cycle," Energy, Elsevier, vol. 274(C).
    7. Samuel O. Adesanya & J. A. Falade & J. C. Ukaegbu & K. S. Adekeye, 2016. "Mathematical Analysis of a Reactive Viscous Flow through a Channel Filled with a Porous Medium," Journal of Mathematics, Hindawi, vol. 2016, pages 1-8, December.
    8. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    9. Arikoglu, Aytac & Ozkol, Ibrahim & Komurgoz, Guven, 2008. "Effect of slip on entropy generation in a single rotating disk in MHD flow," Applied Energy, Elsevier, vol. 85(12), pages 1225-1236, December.
    10. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Performance optimization of diffusive mass transfer law irreversible isothermal chemical pump," Energy, Elsevier, vol. 263(PC).
    11. Mahmud, Shohel & Fraser, Roydon Andrew, 2006. "Second law analysis of forced convection in a circular duct for non-Newtonian fluids," Energy, Elsevier, vol. 31(12), pages 2226-2244.
    12. Wu, Shuang-Ying & Li, You-Rong & Chen, Yan & Xiao, Lan, 2007. "Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall temperature," Energy, Elsevier, vol. 32(12), pages 2385-2395.
    13. Bangoup Ntegmi, Ghislain Junior & Babikir, Mahamat Hassane & Chara-Dakou, Venant Sorel & Chopkap, Hermann Noume & Mounkang, Osée & Kenfack, Armel Zambou & Simo, Elie & Tchinda, René, 2025. "Thermo-economic and environmental analysis of a Dish-Stirling/Stirling thermal solar refrigerator for cold production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    14. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    15. Kumar, A. & Tripathi, R. & Singh, R. & Chaurasiya, V.K., 2020. "Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    16. Huda Alfannakh & Basma Souayeh & Najib Hdhiri & Muneerah Al Nuwairan & Muayad Al-Shaeli, 2022. "Entropy Generation and Natural Convection Heat Transfer of (MWCNT/SWCNT) Nanoparticles around Two Spaced Spheres over Inclined Plates: Numerical Study," Energies, MDPI, vol. 15(7), pages 1-31, April.
    17. Han, Yong & Wang, Xue-sheng & Zhang, Zhao & Zhang, Hao-nan, 2020. "Multi-objective optimization of geometric parameters for the helically coiled tube using Markowitz optimization theory," Energy, Elsevier, vol. 192(C).
    18. Khan, M. Ijaz & Alzahrani, Faris, 2022. "Optimized framework for slip flow of viscous fluid towards a curved surface with viscous dissipation and Joule heating features," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    19. Mondal, Pranab Kumar & Dholey, Shibdas, 2015. "Effect of conjugate heat transfer on the irreversibility generation rate in a combined Couette–Poiseuille flow between asymmetrically heated parallel plates: The entropy minimization analysis," Energy, Elsevier, vol. 83(C), pages 55-64.
    20. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3554-:d:1695384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.