IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3431-d1691188.html
   My bibliography  Save this article

Machine Learning and Artificial Intelligence Techniques in Smart Grids Stability Analysis: A Review

Author

Listed:
  • Arman Fathollahi

    (Department of Electrical and Computer Engineering, Aarhus University, 8200 Aarhus, Denmark)

Abstract

The incorporation of renewable energy sources in power grids has necessitated innovative solutions for effective energy management. Smart grids have emerged as transformative systems which integrate consumer, generator and dual-role entities to deliver secure, sustainable and economical electricity supplies. This review explores the important role of artificial intelligence and machine learning approaches in managing the developing stability characteristics of smart grids. This work starts with a discussion of the smart grid’s dynamic structures and subsequently transitions into an overview of machine learning approaches that explore various algorithms and their applications to enhance smart grid operations. A comprehensive analysis of frameworks illustrates how machine learning and artificial intelligence solve issues related to distributed energy supplies, load management and contingency planning. This review includes general pseudocode and schematic architectures of artificial intelligence and machine learning methods which are categorized into supervised, semi-supervised, unsupervised and reinforcement learning. It includes support vector machines, decision trees, artificial neural networks, extreme learning machines and probabilistic graphical models, as well as reinforcement strategies like dynamic programming, Monte Carlo methods, temporal difference learning and Deep Q-networks, etc. Examination extends to stability, voltage and frequency regulation along with fault detection methods that highlight their applications in increasing smart grid operational boundaries. The review underlines the various arrays of machine learning algorithms that emphasize the integration of reinforcement learning as a pivotal enhancement in intelligent decision-making within smart grid environments. As a resource this review offers insights for researchers, practitioners and policymakers by providing a roadmap for leveraging intelligent technologies in smart grid control and stability analysis.

Suggested Citation

  • Arman Fathollahi, 2025. "Machine Learning and Artificial Intelligence Techniques in Smart Grids Stability Analysis: A Review," Energies, MDPI, vol. 18(13), pages 1-33, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3431-:d:1691188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qasem Abu Al-Haija & Abdallah A. Smadi & Mohammed F. Allehyani, 2021. "Meticulously Intelligent Identification System for Smart Grid Network Stability to Optimize Risk Management," Energies, MDPI, vol. 14(21), pages 1-19, October.
    2. Ke Zhang & Zhi Hu & Yufei Zhan & Xiaofen Wang & Keyi Guo, 2020. "A Smart Grid AMI Intrusion Detection Strategy Based on Extreme Learning Machine," Energies, MDPI, vol. 13(18), pages 1-19, September.
    3. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    4. Bicer, Y. & Dincer, I. & Aydin, M., 2016. "Maximizing performance of fuel cell using artificial neural network approach for smart grid applications," Energy, Elsevier, vol. 116(P1), pages 1205-1217.
    5. Lasantha Meegahapola & Alfeu Sguarezi & Jack Stanley Bryant & Mingchen Gu & Eliomar R. Conde D. & Rafael B. A. Cunha, 2020. "Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends," Energies, MDPI, vol. 13(13), pages 1-35, July.
    6. Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
    7. Yang, Yandong & Hong, Weijun & Li, Shufang, 2019. "Deep ensemble learning based probabilistic load forecasting in smart grids," Energy, Elsevier, vol. 189(C).
    8. Bassamzadeh, Nastaran & Ghanem, Roger, 2017. "Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks," Applied Energy, Elsevier, vol. 193(C), pages 369-380.
    9. Tiago P. Abud & Andre A. Augusto & Marcio Z. Fortes & Renan S. Maciel & Bruno S. M. C. Borba, 2022. "State of the Art Monte Carlo Method Applied to Power System Analysis with Distributed Generation," Energies, MDPI, vol. 16(1), pages 1-24, December.
    10. Ahmed Sami Alhanaf & Hasan Huseyin Balik & Murtaza Farsadi, 2023. "Intelligent Fault Detection and Classification Schemes for Smart Grids Based on Deep Neural Networks," Energies, MDPI, vol. 16(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    3. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    4. Davi-Arderius, Daniel & Schittekatte, Tim, 2023. "Carbon emissions impacts of operational network constraints: The case of Spain during the Covid-19 crisis," Energy Economics, Elsevier, vol. 128(C).
    5. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review," Energies, MDPI, vol. 18(6), pages 1-51, March.
    6. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    7. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    8. Aurelia Rybak & Aleksandra Rybak & Spas D. Kolev, 2023. "Modeling the Photovoltaic Power Generation in Poland in the Light of PEP2040: An Application of Multiple Regression," Energies, MDPI, vol. 16(22), pages 1-17, November.
    9. Zhiyong Li & Wenbin Wu & Yang Si & Xiaotao Chen, 2023. "Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties," Energies, MDPI, vol. 16(22), pages 1-15, November.
    10. Mounika, Kandi & Bhattacharjee, Ankur, 2025. "Design and experimental validation for performance analysis of non-isolated power converter topologies in fuel cell integrated dynamic load based local energy systems," Energy, Elsevier, vol. 322(C).
    11. Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
    12. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    13. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    14. Giorgio M. Giannuzzi & Viktoriya Mostova & Cosimo Pisani & Salvatore Tessitore & Alfredo Vaccaro, 2022. "Enabling Technologies for Enhancing Power System Stability in the Presence of Converter-Interfaced Generators," Energies, MDPI, vol. 15(21), pages 1-13, October.
    15. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    16. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    17. Chao-Chung Hsu & Bi-Hai Jiang & Chun-Cheng Lin, 2023. "A Survey on Recent Applications of Artificial Intelligence and Optimization for Smart Grids in Smart Manufacturing," Energies, MDPI, vol. 16(22), pages 1-15, November.
    18. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    19. Mazhar Baloch & Mohamed Shaik Honnurvali & Adnan Kabbani & Touqeer Ahmed Jumani & Sohaib Tahir Chauhdary, 2024. "An Intelligent SARIMAX-Based Machine Learning Framework for Long-Term Solar Irradiance Forecasting at Muscat, Oman," Energies, MDPI, vol. 17(23), pages 1-16, December.
    20. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3431-:d:1691188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.