IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3431-d1691188.html
   My bibliography  Save this article

Machine Learning and Artificial Intelligence Techniques in Smart Grids Stability Analysis: A Review

Author

Listed:
  • Arman Fathollahi

    (Department of Electrical and Computer Engineering, Aarhus University, 8200 Aarhus, Denmark)

Abstract

The incorporation of renewable energy sources in power grids has necessitated innovative solutions for effective energy management. Smart grids have emerged as transformative systems which integrate consumer, generator and dual-role entities to deliver secure, sustainable and economical electricity supplies. This review explores the important role of artificial intelligence and machine learning approaches in managing the developing stability characteristics of smart grids. This work starts with a discussion of the smart grid’s dynamic structures and subsequently transitions into an overview of machine learning approaches that explore various algorithms and their applications to enhance smart grid operations. A comprehensive analysis of frameworks illustrates how machine learning and artificial intelligence solve issues related to distributed energy supplies, load management and contingency planning. This review includes general pseudocode and schematic architectures of artificial intelligence and machine learning methods which are categorized into supervised, semi-supervised, unsupervised and reinforcement learning. It includes support vector machines, decision trees, artificial neural networks, extreme learning machines and probabilistic graphical models, as well as reinforcement strategies like dynamic programming, Monte Carlo methods, temporal difference learning and Deep Q-networks, etc. Examination extends to stability, voltage and frequency regulation along with fault detection methods that highlight their applications in increasing smart grid operational boundaries. The review underlines the various arrays of machine learning algorithms that emphasize the integration of reinforcement learning as a pivotal enhancement in intelligent decision-making within smart grid environments. As a resource this review offers insights for researchers, practitioners and policymakers by providing a roadmap for leveraging intelligent technologies in smart grid control and stability analysis.

Suggested Citation

  • Arman Fathollahi, 2025. "Machine Learning and Artificial Intelligence Techniques in Smart Grids Stability Analysis: A Review," Energies, MDPI, vol. 18(13), pages 1-33, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3431-:d:1691188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3431/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3431-:d:1691188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.