Author
Listed:
- Ramesh Kumar Behara
(Electrical, Electronic, and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa)
- Akshay Kumar Saha
(Electrical, Electronic, and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa)
Abstract
This research introduces an enhanced fault detection approach, variational mode decomposition (VMD), for identifying open-circuit IGBT faults in the grid-side converter (GSC) of a doubly fed induction generator (DFIG) wind turbine system. VMD has many advantages over other decomposition methods, notably for non-stationary signals and noise. VMD’s robustness stems from its ability to decompose a signal into intrinsic mode functions (IMFs) with well-defined centre frequencies and bandwidths. The proposed methodology integrates VMD with a hybrid convolutional neural network–long short-term memory (CNN-LSTM) architecture to efficiently extract and learn distinctive temporal and spectral properties from three-phase current sources. Ten operational scenarios with a wind speed range of 5–16 m/s were simulated using a comprehensive MATLAB/Simulink version R2022b model, including one healthy condition and nine unique IGBT failure conditions. The obtained current signals were decomposed via VMD to extract essential frequency components, which were normalised and utilised as input sequences for deep learning models. A comparative comparison of CNN-LSTM and CNN-only classifiers revealed that the CNN-LSTM model attained the greatest classification accuracy of 88.00%, exhibiting enhanced precision and resilience in noisy and dynamic environments. These findings emphasise the efficiency of integrating advanced signal decomposition with deep sequential learning for real-time, high-precision fault identification in wind turbine power electronic converters.
Suggested Citation
Ramesh Kumar Behara & Akshay Kumar Saha, 2025.
"Optimised Neural Network Model for Wind Turbine DFIG Converter Fault Diagnosis,"
Energies, MDPI, vol. 18(13), pages 1-31, June.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:13:p:3409-:d:1689845
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3409-:d:1689845. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.