IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3259-d1684502.html
   My bibliography  Save this article

Energy Savings Potential of Multipurpose Heat Pumps in Air-Handling Systems

Author

Listed:
  • Eva Schito

    (Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy)

  • Paolo Conti

    (Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy)

Abstract

Multipurpose heat pumps are devices able to provide simultaneously heating and cooling requirements. These devices concurrently provide useful thermal energy at condenser and evaporator with a single electrical energy input, potentially achieving energy savings as heat-recovery and co-generative technology. Despite their potential contribution to the energy transition goals as both renewable and energy-efficient technology, their use is not yet widespread. An application example for multipurpose heat pumps is air handlers, where cooling and reheat coils are classically fed by separate thermal generators (i.e., boiler, heat pumps, and chillers). This research aims at presenting the energy potential of multipurpose heat pumps as thermal generators of air handler units, comparing their performances with a classic separate configuration. A museum in the Mediterranean climate is selected as a reference case, as indoor temperature and relative humidity must be continuously controlled by cold and hot coils. The thermal loads at building and air handler level are evaluated through TRNSYS 17 and MATLAB 2022b, through specific dynamic models developed according to manufacturer’s data. An integrated building-HVAC simulation, on the cooling season with a one-hour timestep, demonstrates the advantages of the proposed technology. Indeed, the heating load is almost entirely provided by recovering energy at the condenser, and a 22% energy saving is obtained compared to classic separate generators. Furthermore, a sensitivity analysis confirms that the multipurpose heat pump outperforms separate generation systems across different climates and related loads, with consistently better energy performance due to its adaptability to varying heating and cooling demands.

Suggested Citation

  • Eva Schito & Paolo Conti, 2025. "Energy Savings Potential of Multipurpose Heat Pumps in Air-Handling Systems," Energies, MDPI, vol. 18(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3259-:d:1684502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Byrne, Paul & Miriel, Jacques & Lenat, Yves, 2011. "Experimental study of an air-source heat pump for simultaneous heating and cooling – Part 2: Dynamic behaviour and two-phase thermosiphon defrosting technique," Applied Energy, Elsevier, vol. 88(9), pages 3072-3078.
    2. Cho, Changyong & Min Choi, Jong, 2013. "Experimental investigation of a multi-function heat pump under various operating modes," Renewable Energy, Elsevier, vol. 54(C), pages 253-258.
    3. Byrne, Paul & Miriel, Jacques & Lenat, Yves, 2011. "Experimental study of an air-source heat pump for simultaneous heating and cooling - Part 1: Basic concepts and performance verification," Applied Energy, Elsevier, vol. 88(5), pages 1841-1847, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Byrne, 2022. "Research Summary and Literature Review on Modelling and Simulation of Heat Pumps for Simultaneous Heating and Cooling for Buildings," Energies, MDPI, vol. 15(10), pages 1-43, May.
    2. Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
    3. Siviter, J. & Montecucco, A. & Knox, A.R., 2015. "Rankine cycle efficiency gain using thermoelectric heat pumps," Applied Energy, Elsevier, vol. 140(C), pages 161-170.
    4. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Jung, Hae Won & Baek, Changhyun & Kim, Yongchan, 2014. "Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles," Applied Energy, Elsevier, vol. 119(C), pages 1-9.
    5. Tong, Zhen & Liu, Xiao-Hua & Jiang, Yi, 2017. "Three typical operating states of an R744 two-phase thermosyphon loop," Applied Energy, Elsevier, vol. 206(C), pages 181-192.
    6. Dae-Uk Shin & Chang-Ho Jeong, 2021. "Energy Savings of Simultaneous Heating and Cooling System According to Indoor Set Temperature Changes in the Comfort Range," Energies, MDPI, vol. 14(22), pages 1-19, November.
    7. Lee, Joo Seong & Song, Kang Sub & Ahn, Jae Hwan & Kim, Yongchan, 2015. "Comparison on the transient cooling performances of hybrid ground-source heat pumps with various flow loop configurations," Energy, Elsevier, vol. 82(C), pages 678-685.
    8. Fei Wang & Rijing Zhao & Wenming Xu & Dong Huang & Zhiguo Qu, 2021. "A Heater-Assisted Air Source Heat Pump Air Conditioner to Improve Thermal Comfort with Frost-Retarded Heating and Heat-Uninterrupted Defrosting," Energies, MDPI, vol. 14(9), pages 1-13, May.
    9. Tong, Zhen & Liu, Xiao-Hua & Jiang, Yi, 2017. "Experimental study of the self-regulating performance of an R744 two-phase thermosyphon loop," Applied Energy, Elsevier, vol. 186(P1), pages 1-12.
    10. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    11. Byrne, Paul & Miriel, Jacques & Lenat, Yves, 2011. "Experimental study of an air-source heat pump for simultaneous heating and cooling – Part 2: Dynamic behaviour and two-phase thermosiphon defrosting technique," Applied Energy, Elsevier, vol. 88(9), pages 3072-3078.
    12. Lim, Ju Won & Kim, Hyeonsoo, 2025. "Predicting the energy, economic, and environmental performance of next-generation photovoltaic technologies in residential buildings," Applied Energy, Elsevier, vol. 390(C).
    13. Yang, Seung-Hwan & Rhee, Joong Yong, 2013. "Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating," Applied Energy, Elsevier, vol. 105(C), pages 244-251.
    14. Moo-Yeon Lee & Yongchan Kim & Dong-Yeon Lee, 2012. "Experimental Study on Frost Height of Round Plate Fin-Tube Heat Exchangers for Mobile Heat Pumps," Energies, MDPI, vol. 5(9), pages 1-13, September.
    15. Boahen, Samuel & Anka, Selorm Kwaku & Lee, Kwang Ho & Choi, Jong Min, 2021. "Performance analysis of cascade multi-functional heat pump in summer season," Renewable Energy, Elsevier, vol. 163(C), pages 1001-1011.
    16. Ahmadisedigh, Hossein & Gosselin, Louis, 2019. "Combined heating and cooling networks with waste heat recovery based on energy hub concept," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    18. Wang, Fenghao & Wang, Zhihua & Zheng, Yuxin & Lin, Zhang & Hao, Pengfei & Huan, Chao & Wang, Tian, 2015. "Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification," Applied Energy, Elsevier, vol. 139(C), pages 212-219.
    19. Kim, Min-Hwan & Lee, Kwan-Soo, 2015. "Determination method of defrosting start-time based on temperature measurements," Applied Energy, Elsevier, vol. 146(C), pages 263-269.
    20. Boahen, Samuel & Anka, Selorm Kwaku & Ohm, Tae In & Cho, Yong & Choi, Jong Woong & Kim, Han-Young & Choi, Jong Min, 2023. "Capacity control of a cascade multi-purpose heat pump using variable speed compressor," Renewable Energy, Elsevier, vol. 205(C), pages 945-955.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3259-:d:1684502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.