IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3242-d1684006.html
   My bibliography  Save this article

Next-Level Energy Management in Manufacturing: Facility-Level Energy Digital Twin Framework Based on Machine Learning and Automated Data Collection

Author

Listed:
  • David Vance

    (Industrial and Systems Engineering Department, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37919, USA)

  • Mingzhou Jin

    (Industrial and Systems Engineering Department, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37919, USA)

  • Thomas Wenning

    (Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

  • Sachin Nimbalkar

    (Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

  • Christopher Price

    (Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

Abstract

This research introduces an energy prediction framework at the facility level supported by automated data collection and machine learning models. It investigates whether reducing the prediction time scale allows for applying more complex machine learning techniques and if those techniques improve the prediction accuracy. The primary advantages of this framework lie in its automation of the energy prediction process and its provision of real-time energy data suitable for use in energy dashboards or digital twins. A sitewide dataset was created by combining 15 min energy and daily production data of five shops—assembly, battery, body (electric), body (gas), and paint—from a globally recognized electric vehicle manufacturer. Various machine learning models were evaluated on daily, weekly, and monthly datasets, including, in increasingly complex order: naïve, simple linear regression, net regularized generalized linear regression, principal component regression, k-nearest neighbor, random forest, and Bayesian regularized neural network. Compared to the current state-of-the-art energy consumption prediction for the industrial facility level, this research investigates more complex models and smaller time intervals for higher accuracy. The findings revealed that the more complex monthly models require a minimum of a year and a half of data to operate, while weekly models demand a year of data to achieve improved accuracy. Daily models can operate with only six months of data but exhibit poor performance due to reduced prediction accuracy of production. Key challenges identified include access to reliable, high-quality energy and production data and the initial demand for human labor.

Suggested Citation

  • David Vance & Mingzhou Jin & Thomas Wenning & Sachin Nimbalkar & Christopher Price, 2025. "Next-Level Energy Management in Manufacturing: Facility-Level Energy Digital Twin Framework Based on Machine Learning and Automated Data Collection," Energies, MDPI, vol. 18(13), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3242-:d:1684006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Wei & Patros, Panos & Young, Brent & Klinac, Elsa & Walmsley, Timothy Gordon, 2022. "Energy digital twin technology for industrial energy management: Classification, challenges and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    3. Wei, Min & Hong, Seung Ho & Alam, Musharraf, 2016. "An IoT-based energy-management platform for industrial facilities," Applied Energy, Elsevier, vol. 164(C), pages 607-619.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
    2. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Ning, Jiajun & Xiong, Lixin, 2024. "Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model," Energy, Elsevier, vol. 288(C).
    4. Francisco-Javier Ferrández-Pastor & Higinio Mora & Antonio Jimeno-Morenilla & Bruno Volckaert, 2018. "Deployment of IoT Edge and Fog Computing Technologies to Develop Smart Building Services," Sustainability, MDPI, vol. 10(11), pages 1-23, October.
    5. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    6. Youmeng Wu & Hao Sun & Hongliang Sun & Chi Xie, 2022. "Impact of Public Environmental Concerns on the Digital Transformation of Heavily Polluting Enterprises," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
    7. Xu, Jing & Cui, Zhipeng & Ma, Suxia & Wang, Xiaowei & Zhang, Zhiyao & Zhang, Guoxia, 2024. "Data based digital twin for operational performance optimization in CFB boilers," Energy, Elsevier, vol. 306(C).
    8. Marian Kampik & Marcin Fice & Adam Pilśniak & Krzysztof Bodzek & Anna Piaskowy, 2023. "An Analysis of Energy Consumption in Small- and Medium-Sized Buildings," Energies, MDPI, vol. 16(3), pages 1-21, February.
    9. Akbar, Muhammad & An, Qi & Ye, Yulian & Wu, Lichao & Wu, Chang & Bu, Tianlong & Dong, Wenjing & Wang, Xunying & Wang, Baoyuan & Wang, Hao & Xia, Chen, 2025. "400 °C operable SOFCs based on ceria electrolyte for powering wireless sensor in internet of things," Applied Energy, Elsevier, vol. 378(PB).
    10. Amir Abolhassani & Gale Boyd & Majid Jaridi & Bhaskaran Gopalakrishnan & James Harner, 2023. "“Is Energy That Different from Labor?” Similarity in Determinants of Intensity for Auto Assembly Plants," Energies, MDPI, vol. 16(4), pages 1-35, February.
    11. Zhao, Dengfeng & Lin, Jingting & Bashir, Muhammad Adnan, 2024. "Analyze the effect of energy efficiency, natural resources, and the digital economy on ecological footprint in OCED countries: The mediating role of renewable energy," Resources Policy, Elsevier, vol. 95(C).
    12. Yu, Jianxi & Petersen, Nils & Liu, Pei & Li, Zheng & Wirsum, Manfred, 2022. "Hybrid modelling and simulation of thermal systems of in-service power plants for digital twin development," Energy, Elsevier, vol. 260(C).
    13. Kerstin Fritzsche & Silke Niehoff & Grischa Beier, 2018. "Industry 4.0 and Climate Change—Exploring the Science-Policy Gap," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    14. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Qiu, Yuhang & Hui, Yunze & Zhao, Pengxiang & Cai, Cheng-Hao & Dai, Baiqian & Dou, Jinxiao & Bhattacharya, Sankar & Yu, Jianglong, 2024. "A novel image expression-driven modeling strategy for coke quality prediction in the smart cokemaking process," Energy, Elsevier, vol. 294(C).
    16. Dirk Deschrijver, 2021. "Special Issue: “Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization”," Energies, MDPI, vol. 14(6), pages 1-3, March.
    17. Byunghyun Lim & Dongju Kim & Woojin Cho & Jae-Hoi Gu, 2025. "Machine Learning and Multilayer Perceptron-Based Customized Predictive Models for Individual Processes in Food Factories," Energies, MDPI, vol. 18(11), pages 1-22, June.
    18. Reka, S. Sofana & Dragicevic, Tomislav, 2018. "Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 90-108.
    19. Vytautas Bocullo & Linas Martišauskas & Ramūnas Gatautis & Otilija Vonžudaitė & Rimantas Bakas & Darius Milčius & Rytis Venčaitis & Darius Pupeikis, 2023. "A Digital Twin Approach to City Block Renovation Using RES Technologies," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    20. Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3242-:d:1684006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.