IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3195-d1681638.html
   My bibliography  Save this article

High-Temperature Molten Salt Heat Exchanger Technology: Research Advances, Challenges, and Future Perspectives

Author

Listed:
  • Chunyang Zheng

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China)

  • Keyong Cheng

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    Nanjing Institute of Future Energy System, Nanjing 210000, China
    University of Chinese Academy of Sciences, Nanjing 211135, China)

  • Dongjiang Han

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China)

Abstract

Molten salt heat exchangers are pivotal components in advanced energy systems, where their high-temperature stability and efficient heat transfer performance are critical for system reliability. This paper provides a comprehensive review of recent advancements in molten salt heat exchanger technology, focusing on their application in nuclear energy, concentrated solar power, and thermal energy storage systems. Key design considerations, including thermophysical properties of molten salts and operational conditions, are analyzed to highlight performance optimization strategies. The review traces the evolution from traditional shell-and-tube heat exchangers to compact designs like printed circuit heat exchangers, emphasizing improvements in heat transfer efficiency and power density. Challenges such as material corrosion, manufacturing complexities, and flow dynamics are critically examined. Furthermore, future research directions are proposed, including the development of high-performance materials, advanced manufacturing techniques, and optimized geometries. This review aims to consolidate dispersed research findings, address technological bottlenecks, and provide a roadmap for the continued development of molten salt heat exchangers in high-temperature energy systems.

Suggested Citation

  • Chunyang Zheng & Keyong Cheng & Dongjiang Han, 2025. "High-Temperature Molten Salt Heat Exchanger Technology: Research Advances, Challenges, and Future Perspectives," Energies, MDPI, vol. 18(12), pages 1-37, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3195-:d:1681638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guillot, Stéphanie & Faik, Abdessamad & Rakhmatullin, Aydar & Lambert, Julien & Veron, Emmanuel & Echegut, Patrick & Bessada, Catherine & Calvet, Nicolas & Py, Xavier, 2012. "Corrosion effects between molten salts and thermal storage material for concentrated solar power plants," Applied Energy, Elsevier, vol. 94(C), pages 174-181.
    2. Vignarooban, K. & Xu, Xinhai & Wang, K. & Molina, E.E. & Li, P. & Gervasio, D. & Kannan, A.M., 2015. "Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems," Applied Energy, Elsevier, vol. 159(C), pages 206-213.
    3. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    4. Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
    5. Zhang, P. & Ma, F. & Xiao, X., 2016. "Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system," Applied Energy, Elsevier, vol. 173(C), pages 255-271.
    6. Desideri, U. & Zepparelli, F. & Morettini, V. & Garroni, E., 2013. "Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations," Applied Energy, Elsevier, vol. 102(C), pages 765-784.
    7. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    8. Qiu, Yu & Li, Ming-Jia & Wang, Wen-Qi & Du, Bao-Cun & Wang, Kun, 2018. "An experimental study on the heat transfer performance of a prototype molten-salt rod baffle heat exchanger for concentrated solar power," Energy, Elsevier, vol. 156(C), pages 63-72.
    9. Zhu, Qingzi & Pishahang, Mehdi & Bichnevicius, Michael & Amy, Caleb & Caccia, Mario & Sandhage, Kenneth H. & Henry, Asegun, 2022. "The importance of maldistribution matching for thermal performance of compact heat exchangers," Applied Energy, Elsevier, vol. 324(C).
    10. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    11. Fu, Qianmei & Ding, Jing & Lao, Jiewei & Wang, Weilong & Lu, Jianfeng, 2019. "Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage," Applied Energy, Elsevier, vol. 247(C), pages 594-604.
    12. Li, Xin & Kong, Weiqiang & Wang, Zhifeng & Chang, Chun & Bai, Fengwu, 2010. "Thermal model and thermodynamic performance of molten salt cavity receiver," Renewable Energy, Elsevier, vol. 35(5), pages 981-988.
    13. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    14. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    3. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    5. Rahimi, M. & Ardahaie, S. Saedi & Hosseini, M.J. & Gorzin, M., 2020. "Energy and exergy analysis of an experimentally examined latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P1), pages 1845-1860.
    6. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    7. Kondaiah, P. & Pitchumani, R., 2023. "Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 205(C), pages 956-991.
    8. Linares, José I. & Montes, María J. & Cantizano, Alexis & Sánchez, Consuelo, 2020. "A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants," Applied Energy, Elsevier, vol. 263(C).
    9. Zhang, Maolong & Xu, Chao & Du, Xiaoze & Amjad, Muhammad & Wen, Dongsheng, 2017. "Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage," Applied Energy, Elsevier, vol. 189(C), pages 697-710.
    10. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2018. "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 104-119.
    11. Nahhas, Tamar & Py, Xavier & Sadiki, Najim, 2019. "Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 226-235.
    12. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    13. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
    14. Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
    15. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    16. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    17. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    18. Wang, Wujun & Fan, Liwu & Laumert, Björn, 2021. "A theoretical heat transfer analysis of different indirectly-irradiated receiver designs for high-temperature concentrating solar power applications," Renewable Energy, Elsevier, vol. 163(C), pages 1983-1993.
    19. Xu, Haoxin & Dal Magro, Fabio & Sadiki, Najim & Mancaux, Jean-Marie & Py, Xavier & Romagnoli, Alessandro, 2018. "Compatibility study between aluminium alloys and alternative recycled ceramics for thermal energy storage applications," Applied Energy, Elsevier, vol. 220(C), pages 94-105.
    20. Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3195-:d:1681638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.