IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3166-d1680222.html
   My bibliography  Save this article

Autonomous Electric Vehicle Charging Station Along a High-Traffic Road as a Model for Efficient Implementation of Emission-Free Economy

Author

Listed:
  • Robert Kaznowski

    (Department of Electrical Power Engineering, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

  • Wojciech Ambroszko

    (Department of Automotive Engineering, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

  • Dariusz Sztafrowski

    (Department of Electrical Power Engineering, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

The growing demand for electric vehicles (EV) has increased the need for reliable and sustainable charging infrastructure. To address this challenge, autonomous charging stations powered by renewable energy sources (RES) are a promising solution. This paper presents a simulation-based study that determines the optimal contribution of wind farms, photovoltaic systems, and energy storage to power an autonomous EV charging station. The simulation takes into account historical weather data, EV charging patterns, and renewable energy storage capacity. The results show that by combining RES and batteries, the charging station can operate autonomously minimizing the dependence on the power grid. Battery energy storage plays a key role in balancing intermittent RES generation and variable demand from the charging station. The simulation highlights the importance of adjusting parameters to optimize the energy utilization of the charging station and minimize the dependence on the grid. Further research is warranted to optimize the design, operation, and integration with advanced energy management systems to increase the efficiency and effectiveness of these charging stations. The development of a widespread autonomous charging infrastructure powered by renewable energy sources can accelerate the transition to clean transportation and support the energy system.

Suggested Citation

  • Robert Kaznowski & Wojciech Ambroszko & Dariusz Sztafrowski, 2025. "Autonomous Electric Vehicle Charging Station Along a High-Traffic Road as a Model for Efficient Implementation of Emission-Free Economy," Energies, MDPI, vol. 18(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3166-:d:1680222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emilia M. Szumska, 2023. "Electric Vehicle Charging Infrastructure along Highways in the EU," Energies, MDPI, vol. 16(2), pages 1-18, January.
    2. Akhtar Hussain & Van-Hai Bui & Ju-Won Baek & Hak-Man Kim, 2020. "Stationary Energy Storage System for Fast EV Charging Stations: Optimality Analysis and Results Validation," Energies, MDPI, vol. 13(1), pages 1-18, January.
    3. Marius C. Möller & Stefan Krauter, 2022. "Hybrid Energy System Model in Matlab/Simulink Based on Solar Energy, Lithium-Ion Battery and Hydrogen," Energies, MDPI, vol. 15(6), pages 1-23, March.
    4. Mahinda Vilathgamuwa & Yateendra Mishra & Tan Yigitcanlar & Ashish Bhaskar & Clevo Wilson, 2022. "Mobile-Energy-as-a-Service (MEaaS): Sustainable Electromobility via Integrated Energy–Transport–Urban Infrastructure," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    5. Carlo Cambini & Raffaele Congiu & Golnoush Soroush, 2020. "Regulation, Innovation, and Systems Integration: Evidence from the EU," Energies, MDPI, vol. 13(7), pages 1-18, April.
    6. Khairy Sayed & Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2019. "Optimum Resilient Operation and Control DC Microgrid Based Electric Vehicles Charging Station Powered by Renewable Energy Sources," Energies, MDPI, vol. 12(22), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Idiano D’Adamo & Massimo Gastaldi & Jacopo Piccioni & Paolo Rosa, 2023. "The Role of Automotive Flexibility in Supporting the Diffusion of Sustainable Mobility Initiatives: A Stakeholder Attitudes Assessment," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 459-481, September.
    2. Alessandro Di Giorgio & Emanuele De Santis & Lucia Frettoni & Stefano Felli & Francesco Liberati, 2023. "Electric Vehicle Fast Charging: A Congestion-Dependent Stochastic Model Predictive Control under Uncertain Reference," Energies, MDPI, vol. 16(3), pages 1-16, January.
    3. Omar Alrumayh & Khairy Sayed & Abdulaziz Almutairi, 2023. "LVRT and Reactive Power/Voltage Support of Utility-Scale PV Power Plants during Disturbance Conditions," Energies, MDPI, vol. 16(7), pages 1-20, April.
    4. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    5. Ahmed G. Abo-Khalil & Mohammad Alobaid, 2023. "A Guide to the Integration and Utilization of Energy Storage Systems with a Focus on Demand Resource Management and Power Quality Enhancement," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    6. Bilal, Mohd & Ahmad, Fareed & Mohammad, Arshad & Rizwan, Mohammad, 2025. "Techno-economic evaluation and sensitivity analysis of renewable energy based designing of plug-in electric vehicle load considering load following strategy," Applied Energy, Elsevier, vol. 377(PC).
    7. Katarzyna Chudy-Laskowska & Maciej Chudy & Jadwiga Pisula & Tomasz Pisula, 2025. "Taxonomical Analysis of Alternative Energy Sources Application in Road Transport in the European Union Countries," Energies, MDPI, vol. 18(16), pages 1-27, August.
    8. Jian Xiao & Wei Hou, 2022. "Cost Estimation Process of Green Energy Production and Consumption Using Probability Learning Approach," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    9. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.
    10. Ibrahim Alsaidan & Mohd Bilal & Muhannad Alaraj & Mohammad Rizwan & Fahad M. Almasoudi, 2023. "A Novel EA-Based Techno–Economic Analysis of Charging System for Electric Vehicles: A Case Study of Qassim Region, Saudi Arabia," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    11. Sayarshad, Hamid R., 2025. "Coordinated routing, charging, and power grid for electric and hydrogen vehicles with renewable energy integration," Renewable Energy, Elsevier, vol. 243(C).
    12. Jonathan Andrés Basantes & Daniela Estefanía Paredes & Jacqueline Rosario Llanos & Diego Edmundo Ortiz & Claudio Danilo Burgos, 2023. "Energy Management System (EMS) Based on Model Predictive Control (MPC) for an Isolated DC Microgrid," Energies, MDPI, vol. 16(6), pages 1-22, March.
    13. Elżbieta Szaruga & Bartosz Pilecki & Marta Sidorkiewicz, 2023. "The Impact of the COVID-19 Pandemic, Transport Accessibility, and Accommodation Accessibility on the Energy Intensity of Public Tourist Transport," Energies, MDPI, vol. 16(19), pages 1-27, October.
    14. Waterson, Michael & Trujillo- Baute, Elisa & Giulietti, Monica, 2022. "Intermittency and the social role of storage," Energy Policy, Elsevier, vol. 165(C).
    15. Khairy Sayed & Mohammed G. Gronfula & Hamdy A. Ziedan, 2020. "Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System," Energies, MDPI, vol. 13(3), pages 1-17, February.
    16. Roberta Caponi & Domenico Vizza & Claudia Bassano & Luca Del Zotto & Enrico Bocci, 2025. "Dynamic Comparative Assessment of Long-Term Simulation Strategies for an Off-Grid PV–AEM Electrolyzer System," Energies, MDPI, vol. 18(15), pages 1-18, August.
    17. Oduro, Richard A. & Taylor, Peter G., 2023. "Future pathways for energy networks: A review of international experiences in high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Yi-Ying Zhang & Jing Shang & Xi Chen & Kun Liang, 2020. "A Self-Learning Detection Method of Sybil Attack Based on LSTM for Electric Vehicles," Energies, MDPI, vol. 13(6), pages 1-15, March.
    19. Monika Ziółko & Monika Hamerska & Maciej Banik & Adrian Machaty, 2025. "Renewable Energy and Electromobility in the EU: Identifying Developmental Synergies Through Cluster Analysis," Energies, MDPI, vol. 18(12), pages 1-16, June.
    20. Boyin Chen & Jiangjiao Xu & Dongdong Li, 2025. "Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies," Energies, MDPI, vol. 18(15), pages 1-19, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3166-:d:1680222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.