IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3165-d1680234.html
   My bibliography  Save this article

Assessing the Resilience of Malawi’s Power Grid to the 2022 Tropical Cyclone Ana Using a Combination of the AFLEPT Metric Framework and Resilience Capacities

Author

Listed:
  • Joyce Nyuma Chivunga

    (Centre for Renewable Energy Systems Technology, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
    Department of Energy Resources Management, Malawi University of Science and Technology, Limbe P.O. Box 5196, Malawi)

  • Fransisco Gonzalez-Longatt

    (Centre for Renewable Energy Systems Technology, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK)

  • Zhengyu Lin

    (Centre for Renewable Energy Systems Technology, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK)

  • Richard Blanchard

    (Centre for Renewable Energy Systems Technology, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK)

Abstract

While power system resilience studies continue to grow due to the criticality of electrical infrastructures, the challenge of inconsistencies in evaluation frameworks remains. Furthermore, the desire for researchers to contribute towards the development of practical assessment frameworks continues to grow. In addition, the locality of resilience issues has challenged researchers to find context-based resilience solutions. This paper addresses these by proposing an assessment framework, which evaluates the five phases of the resilience trapezoid: preventive, absorptive, adaptive, restorative, and transformative. This framework presents metrics for measuring preventive indicators for the a nticipating system status, f requency of functionality degradation, how l ow functionality drops, e xtension in a degraded state, the p romptness of recovery, and system t ransformation—the AFLEPT model. The AFLEPT framework is applied, with its resilience indicators and capacities, to evaluate the resilience of Malawi’s transmission network to the 2022 Tropical Cyclone Ana (TCA). DigSILENT PowerFactory 2023 SP5 was utilised to support this research. The results indicate significant resilience challenges, manifested by an inadequate generation reserve, significant decline in grid functionality, extended total grid outage hours, longer restoration times, and a lack of transformation. Eight percent of key transmission lines and eighteen percent of power generation infrastructure were completely damaged by the TCA, which lasted up to 25 days and 16 months to, respectively, before restoration. Thus, the analysis reveals gaps in preventive, absorptive, adaptive, restorative, and transformative resilience capacities. The results underscore the need for context-based infrastructural and operational resilience enhancement measures, which have been discussed in this paper. Directions for further research have been proposed, which include exploring multiple grid improvement measures and an economic modelling of these measures.

Suggested Citation

  • Joyce Nyuma Chivunga & Fransisco Gonzalez-Longatt & Zhengyu Lin & Richard Blanchard, 2025. "Assessing the Resilience of Malawi’s Power Grid to the 2022 Tropical Cyclone Ana Using a Combination of the AFLEPT Metric Framework and Resilience Capacities," Energies, MDPI, vol. 18(12), pages 1-41, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3165-:d:1680234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    2. Jiazheng Lu & Jun Guo & Zhou Jian & Yihao Yang & Wenhu Tang, 2018. "Resilience Assessment and Its Enhancement in Tackling Adverse Impact of Ice Disasters for Power Transmission Systems," Energies, MDPI, vol. 11(9), pages 1-15, August.
    3. Joyce Nyuma Chivunga & Zhengyu Lin & Richard Blanchard, 2025. "Integrated Analysis of Operator Response Capacity, Energy Policy Support and Infrastructure Robustness in Power Grid Resilience Under Severe Weather Events: Lessons from Malawi," Energies, MDPI, vol. 18(11), pages 1-30, May.
    4. Kumar, Nikhil & Poonia, Vikas & Gupta, B.B. & Goyal, Manish Kumar, 2021. "A novel framework for risk assessment and resilience of critical infrastructure towards climate change," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    5. Habibollah Raoufi & Vahid Vahidinasab & Kamyar Mehran, 2020. "Power Systems Resilience Metrics: A Comprehensive Review of Challenges and Outlook," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    6. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    7. Göteman, Malin & Panteli, Mathaios & Rutgersson, Anna & Hayez, Léa & Virtanen, Mikko J. & Anvari, Mehrnaz & Johansson, Jonas, 2025. "Resilience of offshore renewable energy systems to extreme metocean conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    8. Shen, Lijuan & Tang, Yanlin & Tang, Loon Ching, 2021. "Understanding key factors affecting power systems resilience," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    9. Handayani, Kamia & Filatova, Tatiana & Krozer, Yoram & Anugrah, Pinto, 2020. "Seeking for a climate change mitigation and adaptation nexus: Analysis of a long-term power system expansion," Applied Energy, Elsevier, vol. 262(C).
    10. William O. Taylor & Peter L. Watson & Diego Cerrai & Emmanouil Anagnostou, 2022. "A Statistical Framework for Evaluating the Effectiveness of Vegetation Management in Reducing Power Outages Caused during Storms in Distribution Networks," Sustainability, MDPI, vol. 14(2), pages 1-18, January.
    11. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    12. Zidane, Tekai Eddine Khalil & Muis, Zarina Ab & Ho, Wai Shin & Zahraoui, Younes & Aziz, Ali Saleh & Su, Chun-Lien & Mekhilef, Saad & Elia Campana, Pietro, 2025. "Power systems and microgrids resilience enhancement strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    13. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joyce Nyuma Chivunga & Zhengyu Lin & Richard Blanchard, 2023. "Power Systems’ Resilience: A Comprehensive Literature Review," Energies, MDPI, vol. 16(21), pages 1-31, October.
    2. Zidane, Tekai Eddine Khalil & Muis, Zarina Ab & Ho, Wai Shin & Zahraoui, Younes & Aziz, Ali Saleh & Su, Chun-Lien & Mekhilef, Saad & Elia Campana, Pietro, 2025. "Power systems and microgrids resilience enhancement strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    3. Joyce Nyuma Chivunga & Zhengyu Lin & Richard Blanchard, 2025. "Integrated Analysis of Operator Response Capacity, Energy Policy Support and Infrastructure Robustness in Power Grid Resilience Under Severe Weather Events: Lessons from Malawi," Energies, MDPI, vol. 18(11), pages 1-30, May.
    4. Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.
    5. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    6. Hongyan Dui & Kaixin Liu & Shaomin Wu, 2024. "Data-driven reliability and resilience measure of transportation systems considering disaster levels," Annals of Operations Research, Springer, vol. 340(1), pages 217-243, September.
    7. Watson, Bryan C & Morris, Zack B & Weissburg, Marc & Bras, Bert, 2023. "System of system design-for-resilience heuristics derived from forestry case study variants," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Hou, Hui & Tang, Junyi & Zhang, Zhiwei & Wang, Zhuo & Wei, Ruizeng & Wang, Lei & He, Huan & Wu, Xixiu, 2023. "Resilience enhancement of distribution network under typhoon disaster based on two-stage stochastic programming," Applied Energy, Elsevier, vol. 338(C).
    9. Jalilpoor, Kamran & Oshnoei, Arman & Mohammadi-Ivatloo, Behnam & Anvari-Moghaddam, Amjad, 2022. "Network hardening and optimal placement of microgrids to improve transmission system resilience: A two-stage linear program," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Linas Martišauskas & Juozas Augutis & Ričardas Krikštolaitis & Rolandas Urbonas & Inga Šarūnienė & Vytis Kopustinskas, 2022. "A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators," Energies, MDPI, vol. 15(11), pages 1-25, May.
    11. Cesar A. Vega Penagos & Jan L. Diaz & Omar F. Rodriguez-Martinez & Fabio Andrade & Adriana C. Luna, 2023. "Metrics and Strategies Used in Power Grid Resilience," Energies, MDPI, vol. 17(1), pages 1-16, December.
    12. Wang, Han & Hou, Kai & Zhao, Junbo & Yu, Xiaodan & Jia, Hongjie & Mu, Yunfei, 2022. "Planning-Oriented resilience assessment and enhancement of integrated electricity-gas system considering multi-type natural disasters," Applied Energy, Elsevier, vol. 315(C).
    13. Zhang, Xi & Tu, Haicheng & Guo, Jianbo & Ma, Shicong & Li, Zhen & Xia, Yongxiang & Tse, Chi Kong, 2021. "Braess paradox and double-loop optimization method to enhance power grid resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    15. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Paul, Shuva & Poudyal, Abodh & Poudel, Shiva & Dubey, Anamika & Wang, Zhaoyu, 2024. "Resilience assessment and planning in power distribution systems: Past and future considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. He, Yuxuan & Zio, Enrico & Yang, Zhaoming & Xiang, Qi & Fan, Lin & He, Qian & Peng, Shiliang & Zhang, Zongjie & Su, Huai & Zhang, Jinjun, 2025. "A systematic resilience assessment framework for multi-state systems based on physics-informed neural network," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    18. Wang, Shuliang & Guo, Zhaoyang & Huang, Xiaodi & Zhang, Jianhua, 2024. "A three-stage model of quantifying and analyzing power network resilience based on network theory," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Cao, Shankang & Wei, Fanrong & Lin, Xiangning & Yuan, Xitao & Huang, Qiyuan & Xiang, Hong, 2025. "Risk prediction based preventive typhoon defending for semi-independent power system," Applied Energy, Elsevier, vol. 377(PC).
    20. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3165-:d:1680234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.