IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v340y2024i1d10.1007_s10479-023-05301-w.html
   My bibliography  Save this article

Data-driven reliability and resilience measure of transportation systems considering disaster levels

Author

Listed:
  • Hongyan Dui

    (Zhengzhou University)

  • Kaixin Liu

    (Zhengzhou University)

  • Shaomin Wu

    (University of Kent)

Abstract

With the development of economic globalization and increasing international trade, the maritime transportation system (MTS) is becoming more and more complex. A failure of any supply line in the MTS can seriously affect the operation of the system. Resilience describes the ability of a system to withstand or recover from a disaster and is therefore an important method of disaster management in MTS. This paper analyzes the impact of disasters on MTS, using the data of Suez Canal "Century of Congestion" as an example. In practice, the severity of a disaster is dynamic. This paper categorizes disasters into different levels, which are then modelled by the Markov chain. The concept of a repair line set is proposed and is determined with the aim to minimize the total loss and maximize the resilience increment of the line to the system. The resilience measure of MTS is defined to determine the repair line sequence in the repair line set. Finally, a maritime transportation system network from the Far East to the Mediterranean Sea is used to validate the applicability of the proposed method.

Suggested Citation

  • Hongyan Dui & Kaixin Liu & Shaomin Wu, 2024. "Data-driven reliability and resilience measure of transportation systems considering disaster levels," Annals of Operations Research, Springer, vol. 340(1), pages 217-243, September.
  • Handle: RePEc:spr:annopr:v:340:y:2024:i:1:d:10.1007_s10479-023-05301-w
    DOI: 10.1007/s10479-023-05301-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05301-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05301-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    3. H. Jithamala Caldera & S. C. Wirasinghe, 2022. "A universal severity classification for natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1533-1573, March.
    4. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Mingchih Chen & Xufeng Zhao & Toshio Nakagawa, 2019. "Replacement policies with general models," Annals of Operations Research, Springer, vol. 277(1), pages 47-61, June.
    6. Wan, Chengpeng & Yan, Xinping & Zhang, Di & Qu, Zhuohua & Yang, Zaili, 2019. "An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 222-240.
    7. Barker, Kash & Ramirez-Marquez, Jose Emmanuel & Rocco, Claudio M., 2013. "Resilience-based network component importance measures," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 89-97.
    8. Sachuer Bao & Chi Zhang & Min Ouyang & Lixin Miao, 2019. "An integrated tri-level model for enhancing the resilience of facilities against intentional attacks," Annals of Operations Research, Springer, vol. 283(1), pages 87-117, December.
    9. Si, Shubin & Levitin, Gregory & Dui, Hongyan & Sun, Shudong, 2013. "Component state-based integrated importance measure for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 75-83.
    10. Woods, David D., 2015. "Four concepts for resilience and the implications for the future of resilience engineering," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 5-9.
    11. Asadabadi, Ali & Miller-Hooks, Elise, 2020. "Maritime port network resiliency and reliability through co-opetition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    12. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    13. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Cerqueti, Roy & Ferraro, Giovanna & Iovanella, Antonio, 2019. "Measuring network resilience through connection patterns," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 320-329.
    8. Shuai Lin & Limin Jia & Hengrun Zhang & Yanhui Wang, 2021. "A method for assessing resilience of high-speed EMUs considering a network-based system topology and performance data," Journal of Risk and Reliability, , vol. 235(5), pages 877-895, October.
    9. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    10. Caputo, A.C. & Donati, L. & Salini, P., 2023. "Estimating resilience of manufacturing plants to physical disruptions: Model and application," International Journal of Production Economics, Elsevier, vol. 266(C).
    11. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    12. Jia, Chuanzhou & Zhang, Chi & Li, Yan-Fu & Li, Quan-Lin, 2023. "Joint pre- and post-disaster planning to enhance the resilience of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    14. Uday, Payuna & Chandrahasa, Rakshit & Marais, Karen, 2019. "System Importance Measures: Definitions and Application to System-of-Systems Analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Chatterjee, Abheek & Layton, Astrid, 2020. "Mimicking nature for resilient resource and infrastructure network design," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Zhang, Xiaoge & Mahadevan, Sankaran & Sankararaman, Shankar & Goebel, Kai, 2018. "Resilience-based network design under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 364-379.
    17. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Dui, Hongyan & Zhu, Yawen & Tao, Junyong, 2024. "Multi-phased resilience methodology of urban sewage treatment network based on the phase and node recovery importance in IoT," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    20. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:340:y:2024:i:1:d:10.1007_s10479-023-05301-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.