IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3103-d1677697.html
   My bibliography  Save this article

A Multi-Scale Time–Frequency Complementary Load Forecasting Method for Integrated Energy Systems

Author

Listed:
  • Enci Jiang

    (School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Ziyi Wang

    (Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Shanshan Jiang

    (School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

Abstract

With the growing demand for global energy transition, integrated energy systems (IESs) have emerged as a key pathway for sustainable development due to their deep coupling of multi-energy flows. Accurate load forecasting is crucial for IES optimization and scheduling, yet conventional methods struggle with complex spatio-temporal correlations and long-term dependencies. This study proposes ST-ScaleFusion, a multi-scale time–frequency complementary hybrid model to enhance comprehensive energy load forecasting accuracy. The model features three core modules: a multi-scale decomposition hybrid module for fine-grained extraction of multi-time-scale features via hierarchical down-sampling and seasonal-trend decoupling; a frequency domain interpolation forecasting (FI) module using complex linear projection for amplitude-phase joint modeling to capture long-term patterns and suppress noise; and an FI sub-module extending series length via frequency domain interpolation to adapt to non-stationary loads. Experiments on 2021–2023 multi-energy load and meteorological data from the Arizona State University Tempe campus show that ST-ScaleFusion achieves 24 h forecasting MAE values of 667.67 kW for electric load, 1073.93 kW/h for cooling load, and 85.73 kW for heating load, outperforming models like TimesNet and TSMixer. Robust in long-step (96 h) forecasting, it reduces MAE by 30% compared to conventional methods, offering an efficient tool for real-time IES scheduling and risk decision-making.

Suggested Citation

  • Enci Jiang & Ziyi Wang & Shanshan Jiang, 2025. "A Multi-Scale Time–Frequency Complementary Load Forecasting Method for Integrated Energy Systems," Energies, MDPI, vol. 18(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3103-:d:1677697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
    2. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
    3. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    4. Duan, Pengfei & Zhao, Bingxu & Zhang, Xinghui & Fen, Mengdan, 2023. "A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game," Energy, Elsevier, vol. 275(C).
    5. Yan, Yi & Wang, Xuerui & Li, Ke & Li, Chengdong & Tian, Chongyi & Shao, Zhuliang & Li, Ji, 2024. "Stochastic optimisation of district integrated energy systems based on a hybrid probability forecasting model," Energy, Elsevier, vol. 306(C).
    6. Wu, Huayi & Xu, Zhao, 2024. "Multi-energy flow calculation in integrated energy system via topological graph attention convolutional network with transfer learning," Energy, Elsevier, vol. 303(C).
    7. Li, Kang & Duan, Pengfei & Cao, Xiaodong & Cheng, Yuanda & Zhao, Bingxu & Xue, Qingwen & Feng, Mengdan, 2024. "A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction," Applied Energy, Elsevier, vol. 365(C).
    8. Nigitz, Thomas & Gölles, Markus, 2019. "A generally applicable, simple and adaptive forecasting method for the short-term heat load of consumers," Applied Energy, Elsevier, vol. 241(C), pages 73-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Pengdan & Wang, Dan & Wang, Wei & Zhang, Xiuyu & Sun, Yuying, 2024. "A novel multi-energy load forecasting method based on building flexibility feature recognition technology and multi-task learning model integrating LSTM," Energy, Elsevier, vol. 308(C).
    2. Royal, Emily & Bandyopadhyay, Soutir & Newman, Alexandra & Huang, Qiuhua & Tabares-Velasco, Paulo Cesar, 2025. "A statistical framework for district energy long-term electric load forecasting," Applied Energy, Elsevier, vol. 384(C).
    3. Ren, Xiaoxiao & Tian, Xin & Wang, Kai & Yang, Sifan & Chen, Weixiong & Wang, Jinshi, 2025. "Enhanced load forecasting for distributed multi-energy system: A stacking ensemble learning method with deep reinforcement learning and model fusion," Energy, Elsevier, vol. 319(C).
    4. Wang, Danhao & Peng, Daogang & Huang, Dongmei & Zhao, Huirong & Qu, Bogang, 2025. "MMEMformer: A multi-scale memory-enhanced transformer framework for short-term load forecasting in integrated energy systems," Energy, Elsevier, vol. 322(C).
    5. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
    6. Liao, Chengchen & Tan, Mao & Li, Kang & Chen, Jie & Wang, Rui & Su, Yongxin, 2024. "Sequence signal prediction and reconstruction for multi-energy load forecasting in integrated energy systems: A bi-level multi-task learning method," Energy, Elsevier, vol. 313(C).
    7. Lin, Zhengyang & Lin, Tao & Li, Jun & Li, Chen, 2025. "A novel short-term multi-energy load forecasting method for integrated energy system based on two-layer joint modal decomposition and dynamic optimal ensemble learning," Applied Energy, Elsevier, vol. 378(PA).
    8. Peng, Daogang & Liu, Yu & Wang, Danhao & Zhao, Huirong & Qu, Bogang, 2024. "Multi-energy load forecasting for integrated energy system based on sequence decomposition fusion and factors correlation analysis," Energy, Elsevier, vol. 308(C).
    9. Xun Dou & Yu He, 2025. "A Short-Term Electricity Load Complementary Forecasting Method Based on Bi-Level Decomposition and Complexity Analysis," Mathematics, MDPI, vol. 13(7), pages 1-22, March.
    10. Wu, Bizhi & Xiao, Jiangwen & Wang, Shanlin & Zhang, Ziyuan & Wen, Renqiang, 2025. "Enhancing short-term net load forecasting with additive neural decomposition and Weibull Attention," Energy, Elsevier, vol. 322(C).
    11. Zhu, Shibo & Shi, Xiaodan & Zhao, Huan & Chen, Yuntian & Zhang, Haoran & Song, Xuan & Wu, Tianhao & Yan, Jinyue, 2025. "Personalized federated learning for household electricity load prediction with imbalanced historical data," Applied Energy, Elsevier, vol. 384(C).
    12. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    13. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    14. Mingxiang Li & Tianyi Zhang & Haizhu Yang & Kun Liu, 2024. "Multiple Load Forecasting of Integrated Renewable Energy System Based on TCN-FECAM-Informer," Energies, MDPI, vol. 17(20), pages 1-16, October.
    15. Peng Liu & Tieyan Zhang & Furui Tian & Yun Teng & Miaodong Yang, 2024. "Hybrid Decision Support Framework for Energy Scheduling Using Stochastic Optimization and Cooperative Game Theory," Energies, MDPI, vol. 17(24), pages 1-20, December.
    16. Wu, Biao & Zhang, Shaohua & Yuan, Chenxin & Wang, Xian & Wang, Fei & Zhang, Shengqi, 2024. "Cooperative energy and reserve trading strategies for multiple integrated energy systems based on asymmetric nash bargaining theory," Energy, Elsevier, vol. 313(C).
    17. Unterberger, Viktor & Lichtenegger, Klaus & Kaisermayer, Valentin & Gölles, Markus & Horn, Martin, 2021. "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Applied Energy, Elsevier, vol. 293(C).
    18. Wenjie Guo & Jie Liu & Jun Ma & Zheng Lan, 2025. "Short-Term Power Load Forecasting Using Adaptive Mode Decomposition and Improved Least Squares Support Vector Machine," Energies, MDPI, vol. 18(10), pages 1-17, May.
    19. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
    20. Hu, Rong & Zhou, Kaile & Lu, Xinhui, 2025. "Integrated loads forecasting with absence of crucial factors," Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3103-:d:1677697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.