IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2874-d1668547.html
   My bibliography  Save this article

Mathematical Model of Fluid Flow Machine Unit for a Small-Scale Compressed Gas Energy Storage System

Author

Listed:
  • Piotr Lis

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-660 Warsaw, Poland)

  • Jarosław Milewski

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-660 Warsaw, Poland)

  • Pavel Shuhayeu

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-660 Warsaw, Poland)

  • Jan Paczucha

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-660 Warsaw, Poland)

  • Paweł Ryś

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-660 Warsaw, Poland)

Abstract

This study presents a comprehensive dynamic model of a small-scale, solar-powered hydraulic gas compression energy storage system tailored for renewable energy applications. Addressing the intermittency of renewable energy sources, the model incorporates mass, momentum, and energy conservation principles and is implemented using GT-Suite simulation software v2025.0. The system, based on a liquid piston mechanism, was analyzed under both adiabatic and isothermal compression scenarios. Validation against experimental data showed maximum deviations under 10% for pressure and 5 °C for temperature. Under ideal isothermal conditions, the system stored up to 8 MJ and recovered 6.1 MJ of energy, achieving a round-trip efficiency of 76.3%. In contrast, adiabatic operation yielded 52.6% efficiency due to thermal losses. Sensitivity analyses revealed the importance of heat transfer enhancement, with performance varying by over 15% depending on spray cooling intensity. These findings underscore the potential of thermally integrated hydraulic systems for efficient, scalable, and cost-effective energy storage in distributed renewable energy networks.

Suggested Citation

  • Piotr Lis & Jarosław Milewski & Pavel Shuhayeu & Jan Paczucha & Paweł Ryś, 2025. "Mathematical Model of Fluid Flow Machine Unit for a Small-Scale Compressed Gas Energy Storage System," Energies, MDPI, vol. 18(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2874-:d:1668547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Slavin, V.S. & Bakos, G.C. & Finnikov, K.A., 2009. "Conversion of thermal energy into electricity via a water pump operating in Stirling engine cycle," Applied Energy, Elsevier, vol. 86(7-8), pages 1162-1169, July.
    2. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    2. Xia, Lei & Khosravi, Ali & Han, Minfang & Sun, Li, 2025. "Modelica based hybrid-dimensional dynamic modeling, multi-objective optimization and thermodynamic analysis of cross-flow SOFC system," Renewable Energy, Elsevier, vol. 241(C).
    3. Ruelas, José & Velázquez, Nicolás & Cerezo, Jesús, 2013. "A mathematical model to develop a Scheffler-type solar concentrator coupled with a Stirling engine," Applied Energy, Elsevier, vol. 101(C), pages 253-260.
    4. Moazami Goudarzi, Hosein & Yarahmadi, Mehran & Shafii, Mohammad Behshad, 2017. "Design and construction of a two-phase fluid piston engine based on the structure of fluidyne," Energy, Elsevier, vol. 127(C), pages 660-670.
    5. Orlando Corigliano & Marco Iannuzzi & Crescenzo Pellegrino & Francesco D’Amico & Leonardo Pagnotta & Petronilla Fragiacomo, 2023. "Enhancing Energy Processes and Facilities Redesign in an Anaerobic Digestion Plant for Biomethane Production," Energies, MDPI, vol. 16(15), pages 1-29, August.
    6. Navinkumar, T.M. & Bharatiraja, C., 2025. "Sustainable hydrogen energy fuel cell electric vehicles: A critical review of system components and innovative development recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    7. Langdon-Arms, Samuel & Gschwendtner, Michael & Neumaier, Martin, 2018. "A novel solar-powered liquid piston Stirling refrigerator," Applied Energy, Elsevier, vol. 229(C), pages 603-613.
    8. Abdur Rehman Mazhar & Yongliang Shen & Shuli Liu, 2024. "Viability of low‐grade heat conversion using liquid piston Stirling engines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
    9. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).
    10. Banasiak, David & Kienberger, Thomas, 2024. "A comparative analysis of the economic feasibility of reversible hydrogen systems based on time-resolved operation optimisation," Applied Energy, Elsevier, vol. 371(C).
    11. Igor Tatarewicz & Sławomir Skwierz & Michał Lewarski & Robert Jeszke & Maciej Pyrka & Monika Sekuła, 2023. "Mapping the Future of Green Hydrogen: Integrated Analysis of Poland and the EU’s Development Pathways to 2050," Energies, MDPI, vol. 16(17), pages 1-27, August.
    12. Jinghui Zhao & Huijin Guo & Shaobo Ping & Zimeng Guo & Weikang Lin & Yanbo Yang & Wen Shi & Zixi Wang & Tiancai Ma, 2023. "Research on Design and Optimization of Large Metal Bipolar Plate Sealing for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    13. Yaping Wu & Xiaolong Wu & Yuanwu Xu & Yongjun Cheng & Xi Li, 2023. "A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    14. Jokar, H. & Tavakolpour-Saleh, A.R., 2015. "A novel solar-powered active low temperature differential Stirling pump," Renewable Energy, Elsevier, vol. 81(C), pages 319-337.
    15. Ahmadi, Rouhollah & Jokar, H. & Motamedi, Mahmoud, 2018. "A solar pressurizable liquid piston stirling engine: Part 2, optimization and development," Energy, Elsevier, vol. 164(C), pages 1200-1215.
    16. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2012. "Optimization of geometrical parameters for Stirling engines based on theoretical analysis," Applied Energy, Elsevier, vol. 92(C), pages 395-405.
    17. Luca Micoli & Roberta Russo & Tommaso Coppola & Andrea Pietra, 2023. "Performance Assessment of the Heat Recovery System of a 12 MW SOFC-Based Generator on Board a Cruise Ship through a 0D Model," Energies, MDPI, vol. 16(8), pages 1-14, April.
    18. Motamedi, Mahmoud & Ahmadi, Rouhollah & Jokar, H., 2018. "A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation," Energy, Elsevier, vol. 155(C), pages 796-814.
    19. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Orlando Corigliano & Giuseppe De Lorenzo, 2023. "Experimental Activities on a Hydrogen-Powered Solid Oxide Fuel Cell System and Guidelines for Its Implementation in Aviation and Maritime Sectors," Energies, MDPI, vol. 16(15), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2874-:d:1668547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.