Author
Listed:
- Tao Zheng
(School of Mechanical Engineering, Tianjin University, Tianjin 300072, China)
- Hui Xie
(School of Mechanical Engineering, Tianjin University, Tianjin 300072, China)
- Boqiang Liang
(School of Mechanical Engineering, Tianjin University, Tianjin 300072, China)
Abstract
The series–parallel hybrid powertrain combines the advantages of both series and parallel configurations, offering optimal power performance and fuel efficiency. However, the presence of multiple excitation sources significantly complicates the torsional vibration behavior during engine startup. To accurately identify and analyze the torsional vibration characteristics induced by shaft resonance in this process, a torsional vibration feature identification algorithm based on disturbance observation and parameter partition learning is proposed. A simplified model of the drivetrain shaft system is first established, and an extended state Kalman filter (ESKF) is designed to accurately estimate the torque of the torsional damper. The inclusion of extended disturbance states enhances the model’s robustness against system uncertainties. Subsequently, continuous wavelet transform (CWT) is employed to identify the resonance characteristics in the torsional vibration process from the torque signal. Combined with the parameter partition learning strategy, resonance frequencies are utilized to infer key system parameters. The results demonstrate that, under a 20% perturbation of structural parameters, the observer model with fixed parameters yields a root mean square error (RMSE) of 10.16 N·m for the torsional damper torque. In contrast, incorporating the parameter self-learning algorithm reduces the RMSE to 2.36 N·m, representing an 85.2% improvement in estimation accuracy. Using the Morlet wavelet with a frequency resolution parameter (VPO) of 15 at a 50 Hz sampling rate, the identified resonance frequency was 14.698 Hz, showing a 1.1% deviation from the actual natural frequency of 14.53 Hz.
Suggested Citation
Tao Zheng & Hui Xie & Boqiang Liang, 2025.
"Torsional Vibration Characterization of Hybrid Power Systems via Disturbance Observer and Partitioned Learning,"
Energies, MDPI, vol. 18(11), pages 1-28, May.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:11:p:2847-:d:1667956
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2847-:d:1667956. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.