IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2832-d1667535.html
   My bibliography  Save this article

Air Conditioning Load Forecasting for Geographical Grids Using Deep Reinforcement Learning and Density-Based Spatial Clustering of Applications with Noise and Graph Attention Networks

Author

Listed:
  • Chuan Long

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Xinting Yang

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Yunche Su

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Fang Liu

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Ruiguang Ma

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Tiannan Ma

    (State Grid Sichuan Economic Research Institute, Chengdu 610041, China)

  • Yangjin Wu

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Xiaodong Shen

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

Air conditioning loads in power systems exhibit spatiotemporal heterogeneity across geographical regions, complicating accurate load forecasting. This study proposes a framework that integrates Deep Reinforcement Learning-guided DBSCAN (DRL-DBSCAN) clustering with a Graph Attention Network (GAT)-based Graph Neural Network to model spatial dependencies and temporal dynamics. Using meteorological features like temperature and humidity, the framework clusters geographical grids and applies GAT to capture spatial patterns. On a Pecan Street dataset of 25 households in Austin, the GAT with DRL-DBSCAN achieves a Test MSE of 0.0216 and MAE of 0.0884, outperforming K-Means (MSE: 0.0523, MAE: 0.1456), Hierarchical clustering (MSE: 0.0478, MAE: 0.1321), no-clustering (MSE: 0.0631, MAE: 0.1678), LSTM (MSE: 0.3259, MAE: 0.3442), Transformer (MSE: 0.6415, MAE: 0.4835), and MLP (MSE: 0.7269, MAE: 0.5240) baselines. This approach enhances forecasting accuracy for real-time grid management and energy efficiency in smart grids, though further refinement is needed for standardizing predicted load ranges.

Suggested Citation

  • Chuan Long & Xinting Yang & Yunche Su & Fang Liu & Ruiguang Ma & Tiannan Ma & Yangjin Wu & Xiaodong Shen, 2025. "Air Conditioning Load Forecasting for Geographical Grids Using Deep Reinforcement Learning and Density-Based Spatial Clustering of Applications with Noise and Graph Attention Networks," Energies, MDPI, vol. 18(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2832-:d:1667535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2832/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2832/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussain, Akhtar & Kazemi, Nazli & Musilek, Petr, 2025. "Clustering-based EV suitability analysis for grid support services," Energy, Elsevier, vol. 320(C).
    2. Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
    3. Laiqing Yan & Zutai Yan & Zhenwen Li & Ning Ma & Ran Li & Jian Qin, 2023. "Electricity Market Price Prediction Based on Quadratic Hybrid Decomposition and THPO Algorithm," Energies, MDPI, vol. 16(13), pages 1-18, July.
    4. Haben, Stephen & Giasemidis, Georgios & Ziel, Florian & Arora, Siddharth, 2019. "Short term load forecasting and the effect of temperature at the low voltage level," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1469-1484.
    5. Rae-Jun Park & Kyung-Bin Song & Bo-Sung Kwon, 2020. "Short-Term Load Forecasting Algorithm Using a Similar Day Selection Method Based on Reinforcement Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.
    6. Wang, Lei & He, Yigang, 2022. "M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions," Applied Energy, Elsevier, vol. 324(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xinlin & Wang, Hao & Li, Shengping & Jin, Haizhen, 2024. "A reinforcement learning-based online learning strategy for real-time short-term load forecasting," Energy, Elsevier, vol. 305(C).
    2. Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org, revised Feb 2025.
    3. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    4. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    5. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    6. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    7. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    8. Zhang, Yue & Farnoosh, Arash, 2019. "Analyzing the dynamic impact of electricity futures on revenue and risk of renewable energy in China," Energy Policy, Elsevier, vol. 132(C), pages 678-690.
    9. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    10. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    11. Eva Lucas Segarra & Germán Ramos Ruiz & Vicente Gutiérrez González & Antonis Peppas & Carlos Fernández Bandera, 2020. "Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    12. Alexandros Menelaos Tzortzis & Sotiris Pelekis & Evangelos Spiliotis & Evangelos Karakolis & Spiros Mouzakitis & John Psarras & Dimitris Askounis, 2023. "Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
    13. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    14. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    15. Kiguchi, Y. & Weeks, M. & Arakawa, R., 2021. "Predicting winners and losers under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 236(C).
    16. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    17. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko, 2021. "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise," Energies, MDPI, vol. 14(23), pages 1-22, November.
    18. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    19. Leonard Burg & Gonca Gürses-Tran & Reinhard Madlener & Antonello Monti, 2021. "Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels," Energies, MDPI, vol. 14(21), pages 1-16, November.
    20. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2832-:d:1667535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.