IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2809-d1666473.html
   My bibliography  Save this article

A Day-Ahead PV Power Forecasting Method Based on Irradiance Correction and Weather Mode Reliability Decision

Author

Listed:
  • Haonan Dai

    (Department of Power Engineering, North China Electric Power University, Baoding 071003, China)

  • Yumo Zhang

    (Department of Power Engineering, North China Electric Power University, Baoding 071003, China)

  • Fei Wang

    (Department of Power Engineering, North China Electric Power University, Baoding 071003, China
    State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
    Hebei Key Laboratory of Distributed Energy Storage and Microgrid, North China Electric Power University, Baoding 071003, China)

Abstract

Accurate day-ahead photovoltaics (PV) power forecasting results are significant for power grid operation. According to different weather modes, the existing research has established a classification forecast framework to improve the accuracy of day-ahead forecasts. However, the existing framework still has the following two problems: (1) weather mode prediction and power forecasting are highly dependent on the accuracy of numerical weather prediction (NWP), but the existing classification forecasting framework ignores the impact from NWP errors; (2) the validity of the classification forecasting framework comes from the accurate prediction of weather modes, but the existing framework lacks the analysis and decision-making mechanism of the reliability of weather mode prediction results, which will lead to a significant decline in the overall accuracy when weather modes are wrongly predicted. Therefore, this paper proposes a day-ahead PV power forecasting method based on irradiance correction and weather mode reliability decision. Firstly, based on the measured irradiance, K-means clustering method is used to obtain the daily actual weather mode labels; secondly, considering the coupling relationship of meteorological elements, the graph convolutional network (GCN) model is used to correct the predicted irradiance by using multiple meteorological elements of NWP data; thirdly, the weather mode label is converted into one-heat code, and a weather mode reliability prediction model based on a convolutional neural network (CNN) is constructed, and then the prediction strategy of the day to be forecasted is decided; finally, based on the weather mode reliability prediction results, transformer model are established for unreliable weather and credible weather respectively. The simulation results of the ablation experiments show that classification prediction is an effective strategy to improve the forecasting accuracy of day-ahead PV output, which can be further improved by adding irradiance correction and weather mode reliability prediction modules.

Suggested Citation

  • Haonan Dai & Yumo Zhang & Fei Wang, 2025. "A Day-Ahead PV Power Forecasting Method Based on Irradiance Correction and Weather Mode Reliability Decision," Energies, MDPI, vol. 18(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2809-:d:1666473
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Fei & Chen, Peng & Zhen, Zhao & Yin, Rui & Cao, Chunmei & Zhang, Yagang & Duić, Neven, 2022. "Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra-short-term wind farm cluster power forecasting method," Applied Energy, Elsevier, vol. 323(C).
    2. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Juntao & Fu, Xueying & Zhang, Lingli & Shen, Haoye & Wu, Jibo, 2024. "A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms," Energy, Elsevier, vol. 308(C).
    2. Liu, Jiarui & Fu, Yuchen, 2023. "Decomposition spectral graph convolutional network based on multi-channel adaptive adjacency matrix for renewable energy prediction," Energy, Elsevier, vol. 284(C).
    3. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    4. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    5. Yubo Wang & Chao Huo & Fei Xu & Libin Zheng & Ling Hao, 2025. "Ultra-Short-Term Distributed Photovoltaic Power Probabilistic Forecasting Method Based on Federated Learning and Joint Probability Distribution Modeling," Energies, MDPI, vol. 18(1), pages 1-21, January.
    6. Zhao, Beizhen & He, Xin & Ran, Shaolin & Zhang, Yong & Cheng, Cheng, 2024. "Spatial correlation learning based on graph neural network for medium-term wind power forecasting," Energy, Elsevier, vol. 296(C).
    7. Hu, Jiaxiang & Hu, Weihao & Cao, Di & Huang, Yuehui & Chen, Jianjun & Li, Yahe & Chen, Zhe & Blaabjerg, Frede, 2024. "Bayesian averaging-enabled transfer learning method for probabilistic wind power forecasting of newly built wind farms," Applied Energy, Elsevier, vol. 355(C).
    8. Niu, Zhewen & Han, Xiaoqing & Zhang, Dongxia & Wu, Yuxiang & Lan, Songyan, 2024. "Interpretable wind power forecasting combining seasonal-trend representations learning with temporal fusion transformers architecture," Energy, Elsevier, vol. 306(C).
    9. Wang, Sen & Sun, Yonghui & Zhang, Wenjie & Chung, C.Y. & Srinivasan, Dipti, 2024. "Very short-term wind power forecasting considering static data: An improved transformer model," Energy, Elsevier, vol. 312(C).
    10. Xin Zhao & Qiushuang Li & Wanlei Xue & Yihang Zhao & Huiru Zhao & Sen Guo, 2022. "Research on Ultra-Short-Term Load Forecasting Based on Real-Time Electricity Price and Window-Based XGBoost Model," Energies, MDPI, vol. 15(19), pages 1-11, October.
    11. Zhang, Zongbin & Huang, Xiaoqiao & Li, Chengli & Cheng, Feiyan & Tai, Yonghang, 2025. "CRAformer: A cross-residual attention transformer for solar irradiation multistep forecasting," Energy, Elsevier, vol. 320(C).
    12. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    13. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    14. Liu, Jiarui & Fu, Yuchen, 2023. "Renewable energy forecasting: A self-supervised learning-based transformer variant," Energy, Elsevier, vol. 284(C).
    15. Qu, Zhijian & Hou, Xinxing & Li, Jian & Hu, Wenbo, 2024. "Short-term wind farm cluster power prediction based on dual feature extraction and quadratic decomposition aggregation," Energy, Elsevier, vol. 290(C).
    16. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    17. Chen, Xia & Zhang, Huimin & Zhao, Xin Xin & Gong, Qiang & Chang, Chun-Ping, 2024. "Do renewable energy investment and financial development mitigate climate change?," Journal of Asian Economics, Elsevier, vol. 93(C).
    18. Chen, Yuejiang & Xiao, Jiang-Wen & Wang, Yan-Wu & Luo, Yunfeng, 2025. "Non-crossing quantile probabilistic forecasting of cluster wind power considering spatio-temporal correlation," Applied Energy, Elsevier, vol. 377(PA).
    19. Chen, Shi & Li, Chuangzhi & Zang, Tianlei & Zhou, Buxiang & Yang, Lonjie & Qiu, Yiwei & Zhou, Yi & Zhang, Xiaoshun, 2024. "Multi-timescale dispatch technology for islanded energy system in the Gobi Desert," Renewable Energy, Elsevier, vol. 234(C).
    20. Yue Guo & Yu Song & Zilong Lai & Xuyang Wang & Licheng Wang & Hui Qin, 2025. "Learning Coupled Meteorological Characteristics Aids Short-Term Photovoltaic Interval Prediction Methods," Energies, MDPI, vol. 18(2), pages 1-17, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2809-:d:1666473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.