Privacy-Preserving Machine Learning for IoT-Integrated Smart Grids: Recent Advances, Opportunities, and Challenges
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- An Braeken & Pardeep Kumar & Andrew Martin, 2018. "Efficient and Privacy-Preserving Data Aggregation and Dynamic Billing in Smart Grid Metering Networks," Energies, MDPI, vol. 11(8), pages 1-20, August.
- Jianguo Ding & Attia Qammar & Zhimin Zhang & Ahmad Karim & Huansheng Ning, 2022. "Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and Future Directions," Energies, MDPI, vol. 15(18), pages 1-37, September.
- Mohammad Navid Fekri & Ananda Mohon Ghosh & Katarina Grolinger, 2019. "Generating Energy Data for Machine Learning with Recurrent Generative Adversarial Networks," Energies, MDPI, vol. 13(1), pages 1-23, December.
- Lin, Wen-Ting & Chen, Guo & Huang, Yuhan, 2022. "Incentive edge-based federated learning for false data injection attack detection on power grid state estimation: A novel mechanism design approach," Applied Energy, Elsevier, vol. 314(C).
- Harshit Gupta & Piyush Agarwal & Kartik Gupta & Suhana Baliarsingh & O. P. Vyas & Antonio Puliafito, 2023. "FedGrid: A Secure Framework with Federated Learning for Energy Optimization in the Smart Grid," Energies, MDPI, vol. 16(24), pages 1-21, December.
- Mohammad Ahmed Alomari & Mohammed Nasser Al-Andoli & Mukhtar Ghaleb & Reema Thabit & Gamal Alkawsi & Jamil Abedalrahim Jamil Alsayaydeh & AbdulGuddoos S. A. Gaid, 2025. "Security of Smart Grid: Cybersecurity Issues, Potential Cyberattacks, Major Incidents, and Future Directions," Energies, MDPI, vol. 18(1), pages 1-34, January.
- Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
- Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
- Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).
- Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
- Ines Ortega-Fernandez & Francesco Liberati, 2023. "A Review of Denial of Service Attack and Mitigation in the Smart Grid Using Reinforcement Learning," Energies, MDPI, vol. 16(2), pages 1-15, January.
- Ashkan Safari & Hamed Kheirandish Gharehbagh & Morteza Nazari Heris, 2023. "DeepVELOX: INVELOX Wind Turbine Intelligent Power Forecasting Using Hybrid GWO–GBR Algorithm," Energies, MDPI, vol. 16(19), pages 1-22, September.
- Chen, Dongyu & Lin, Xiaojie & Qiao, Yiyuan, 2025. "Perspectives for artificial intelligence in sustainable energy systems," Energy, Elsevier, vol. 318(C).
- Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
- Li, Yanbin & Hu, Weikun & Zhang, Feng & Li, Yun, 2025. "Multi-objective collaborative operation optimization of park-level integrated energy system clusters considering green power forecasting and trading," Energy, Elsevier, vol. 319(C).
- Dowens Nicolas & Kevin Orozco & Steve Mathew & Yi Wang & Wafa Elmannai & George C. Giakos, 2025. "Trustworthiness of Deep Learning Under Adversarial Attacks in Power Systems," Energies, MDPI, vol. 18(10), pages 1-22, May.
- Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
- Zhao, Xiaoyu & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Hu, Jinxue & Zhang, Chenyang & Yuan, Xiaoyang, 2025. "A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening," Energy, Elsevier, vol. 327(C).
- Jian Zhu & Zhiyuan Zhao & Xiaoran Zheng & Zhao An & Qingwu Guo & Zhikai Li & Jianling Sun & Yuanjun Guo, 2023. "Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer," Energies, MDPI, vol. 16(22), pages 1-15, November.
- Jin, Huaiping & Zhang, Kehao & Fan, Shouyuan & Jin, Huaikang & Wang, Bin, 2024. "Wind power forecasting based on ensemble deep learning with surrogate-assisted evolutionary neural architecture search and many-objective federated learning," Energy, Elsevier, vol. 308(C).
- Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
- Cong, Feiyun & Wu, Rong & Zhong, Wei & Lin, Xiaojie, 2024. "A transferable federated learning approach for wind power prediction based on active privacy clustering and knowledge merge," Energy, Elsevier, vol. 313(C).
- Li, Xueping & Wang, Yaokun & Lu, Zhigang, 2023. "Graph-based detection for false data injection attacks in power grid," Energy, Elsevier, vol. 263(PC).
- Jiankai Gao & Yang Li & Bin Wang & Haibo Wu, 2023. "Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm," Energies, MDPI, vol. 16(7), pages 1-21, April.
- Angelos Patsidis & Adam Dyśko & Campbell Booth & Anastasios Oulis Rousis & Polyxeni Kalliga & Dimitrios Tzelepis, 2023. "Digital Architecture for Monitoring and Operational Analytics of Multi-Vector Microgrids Utilizing Cloud Computing, Advanced Virtualization Techniques, and Data Analytics Methods," Energies, MDPI, vol. 16(16), pages 1-19, August.
- Arturs Nikulins & Kaspars Sudars & Edgars Edelmers & Ivars Namatevs & Kaspars Ozols & Vitalijs Komasilovs & Aleksejs Zacepins & Armands Kviesis & Andreas Reinhardt, 2024. "Deep Learning for Wind and Solar Energy Forecasting in Hydrogen Production," Energies, MDPI, vol. 17(5), pages 1-12, February.
- Zhang, Zehui & He, Ningxin & Huo, Weiwei & Xu, Xiaobin & Sun, Chao & Li, Jianwei, 2025. "Privacy preserving federated learning for proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
More about this item
Keywords
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2515-:d:1654843. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.