IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p130-d302185.html
   My bibliography  Save this article

Generating Energy Data for Machine Learning with Recurrent Generative Adversarial Networks

Author

Listed:
  • Mohammad Navid Fekri

    (Department of Electrical and Computer Engneering, The University of Western Ontario, London, ON N6A 5B9, Canada)

  • Ananda Mohon Ghosh

    (Department of Electrical and Computer Engneering, The University of Western Ontario, London, ON N6A 5B9, Canada)

  • Katarina Grolinger

    (Department of Electrical and Computer Engneering, The University of Western Ontario, London, ON N6A 5B9, Canada)

Abstract

The smart grid employs computing and communication technologies to embed intelligence into the power grid and, consequently, make the grid more efficient. Machine learning (ML) has been applied for tasks that are important for smart grid operation including energy consumption and generation forecasting, anomaly detection, and state estimation. These ML solutions commonly require sufficient historical data; however, this data is often not readily available because of reasons such as data collection costs and concerns regarding security and privacy. This paper introduces a recurrent generative adversarial network (R-GAN) for generating realistic energy consumption data by learning from real data. Generativea adversarial networks (GANs) have been mostly used for image tasks (e.g., image generation, super-resolution), but here they are used with time series data. Convolutional neural networks (CNNs) from image GANs are replaced with recurrent neural networks (RNNs) because of RNN’s ability to capture temporal dependencies. To improve training stability and increase quality of generated data, Wasserstein GANs (WGANs) and Metropolis-Hastings GAN (MH-GAN) approaches were applied. The accuracy is further improved by adding features created with ARIMA and Fourier transform. Experiments demonstrate that data generated by R-GAN can be used for training energy forecasting models.

Suggested Citation

  • Mohammad Navid Fekri & Ananda Mohon Ghosh & Katarina Grolinger, 2019. "Generating Energy Data for Machine Learning with Recurrent Generative Adversarial Networks," Energies, MDPI, vol. 13(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:130-:d:302185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lazos, Dimitris & Sproul, Alistair B. & Kay, Merlinde, 2014. "Optimisation of energy management in commercial buildings with weather forecasting inputs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 587-603.
    2. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    3. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    4. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    2. Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.
    3. Nweye, Kingsley & Nagy, Zoltan, 2022. "MARTINI: Smart meter driven estimation of HVAC schedules and energy savings based on Wi-Fi sensing and clustering," Applied Energy, Elsevier, vol. 316(C).
    4. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    5. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    6. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    7. Guillaume Guerard & Hugo Pousseur & Ihab Taleb, 2021. "Isolated Areas Consumption Short-Term Forecasting Method," Energies, MDPI, vol. 14(23), pages 1-23, November.
    8. Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
    9. Chen, Xia & Geyer, Philipp, 2022. "Machine assistance in energy-efficient building design: A predictive framework toward dynamic interaction with human decision-making under uncertainty," Applied Energy, Elsevier, vol. 307(C).
    10. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    11. Gökhan Demirdöğen & Zeynep Işık & Yusuf Arayici, 2020. "Lean Management Framework for Healthcare Facilities Integrating BIM, BEPS and Big Data Analytics," Sustainability, MDPI, vol. 12(17), pages 1-33, August.
    12. Vangelis Marinakis, 2020. "Big Data for Energy Management and Energy-Efficient Buildings," Energies, MDPI, vol. 13(7), pages 1-18, March.
    13. Tang, Lingfeng & Xie, Haipeng & Wang, Xiaoyang & Bie, Zhaohong, 2023. "Privacy-preserving knowledge sharing for few-shot building energy prediction: A federated learning approach," Applied Energy, Elsevier, vol. 337(C).
    14. Maher Selim & Ryan Zhou & Wenying Feng & Peter Quinsey, 2021. "Estimating Energy Forecasting Uncertainty for Reliable AI Autonomous Smart Grid Design," Energies, MDPI, vol. 14(1), pages 1-15, January.
    15. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    16. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    17. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Xiao, Tong & Xu, Peng & He, Ruikai & Sha, Huajing, 2022. "Status quo and opportunities for building energy prediction in limited data Context—Overview from a competition," Applied Energy, Elsevier, vol. 305(C).
    19. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    20. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:130-:d:302185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.