IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2434-d1652409.html
   My bibliography  Save this article

A Deep Learning Method for Photovoltaic Power Generation Forecasting Based on a Time-Series Dense Encoder

Author

Listed:
  • Xingfa Zi

    (School of Physics, Electrical and Energy Engineering, Chuxiong Normal University, Chuxiong 675000, China)

  • Feiyi Liu

    (School of Physics, Electrical and Energy Engineering, Chuxiong Normal University, Chuxiong 675000, China)

  • Mingyang Liu

    (School of Physics, Electrical and Energy Engineering, Chuxiong Normal University, Chuxiong 675000, China)

  • Yang Wang

    (School of Big Data and Basic Science, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China)

Abstract

Deep learning has become a widely used approach in photovoltaic (PV) power generation forecasting due to its strong self-learning and parameter optimization capabilities. In this study, we apply a deep learning algorithm, known as the time-series dense encoder (TiDE), which is an MLP-based encoder–decoder model, to forecast PV power generation. TiDE compresses historical time series and covariates into latent representations via residual connections and reconstructs future values through a temporal decoder, capturing both long- and short-term dependencies. We trained the model using data from 2020 to 2022 from Australia’s Desert Knowledge Australia Solar Centre (DKASC), with 2023 data used for testing. Forecast accuracy was evaluated using the R 2 coefficient of determination, mean absolute error (MAE), and root mean square error (RMSE). In the 5 min ahead forecasting test, TiDE demonstrated high short-term accuracy with an R 2 of 0.952, MAE of 0.150, and RMSE of 0.349, though performance declines for longer horizons, such as the 1 h ahead forecast, compared to other algorithms. For one-day-ahead forecasts, it achieved an R 2 of 0.712, an MAE of 0.507, and an RMSE of 0.856, effectively capturing medium-term weather trends but showing limited responsiveness to sudden weather changes. Further analysis indicated improved performance in cloudy and rainy weather, and seasonal analysis reveals higher accuracy in spring and autumn, with reduced accuracy in summer and winter due to extreme conditions. Additionally, we explore the TiDE model’s sensitivity to input environmental variables, algorithmic versatility, and the implications of forecasting errors on PV grid integration. These findings highlight TiDE’s superior forecasting accuracy and robust adaptability across weather conditions, while also revealing its limitations under abrupt changes.

Suggested Citation

  • Xingfa Zi & Feiyi Liu & Mingyang Liu & Yang Wang, 2025. "A Deep Learning Method for Photovoltaic Power Generation Forecasting Based on a Time-Series Dense Encoder," Energies, MDPI, vol. 18(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2434-:d:1652409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2434/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2434/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Ogliari, Emanuele & Dolara, Alberto & Manzolini, Giampaolo & Leva, Sonia, 2017. "Physical and hybrid methods comparison for the day ahead PV output power forecast," Renewable Energy, Elsevier, vol. 113(C), pages 11-21.
    3. Li, Yanting & He, Yong & Su, Yan & Shu, Lianjie, 2016. "Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines," Applied Energy, Elsevier, vol. 180(C), pages 392-401.
    4. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    2. Jimyung Kang & Jooseung Lee & Soonwoo Lee, 2023. "Data-Driven Minute-Ahead Forecast of PV Generation with Adjacent PV Sector Information," Energies, MDPI, vol. 16(13), pages 1-16, June.
    3. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    4. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    5. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    6. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    7. Zheng, Lingwei & Liu, Zhaokun & Shen, Junnan & Wu, Chenxi, 2018. "Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output," Applied Energy, Elsevier, vol. 229(C), pages 1128-1139.
    8. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.
    9. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
    10. Rodríguez, Fermín & Galarza, Ainhoa & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control," Energy, Elsevier, vol. 239(PB).
    11. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    12. Li, Baojie & Chen, Xin & Jain, Anubhav, 2024. "Power modeling of degraded PV systems: Case studies using a dynamically updated physical model (PV-Pro)," Renewable Energy, Elsevier, vol. 236(C).
    13. Brester, Christina & Kallio-Myers, Viivi & Lindfors, Anders V. & Kolehmainen, Mikko & Niska, Harri, 2023. "Evaluating neural network models in site-specific solar PV forecasting using numerical weather prediction data and weather observations," Renewable Energy, Elsevier, vol. 207(C), pages 266-274.
    14. Wang, Jianzhou & Zhou, Yilin & Li, Zhiwu, 2022. "Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm," Applied Energy, Elsevier, vol. 312(C).
    15. Minli Wang & Peihong Wang & Tao Zhang, 2022. "Evidential Extreme Learning Machine Algorithm-Based Day-Ahead Photovoltaic Power Forecasting," Energies, MDPI, vol. 15(11), pages 1-25, May.
    16. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    17. Yuan, Wenlin & Wang, Xinqi & Su, Chengguo & Cheng, Chuntian & Liu, Zhe & Wu, Zening, 2021. "Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming," Energy, Elsevier, vol. 222(C).
    18. Chen, Rujian & Liu, Gang & Cao, Yisheng & Xiao, Gang & Tang, Jianchao, 2024. "CGAformer: Multi-scale feature Transformer with MLP architecture for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 312(C).
    19. Thi Ngoc Nguyen & Felix Musgens, 2021. "What drives the accuracy of PV output forecasts?," Papers 2111.02092, arXiv.org.
    20. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2434-:d:1652409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.