IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2107-d1384848.html
   My bibliography  Save this article

Influence of Organic Matter Thermal Maturity on Rare Earth Element Distribution: A Study of Middle Devonian Black Shales from the Appalachian Basin, USA

Author

Listed:
  • Shailee Bhattacharya

    (Department of Geology and Geography, West Virginia University, 98 Beechurst Ave, Morgantown, WV 26506, USA)

  • Shikha Sharma

    (Department of Geology and Geography, West Virginia University, 98 Beechurst Ave, Morgantown, WV 26506, USA)

  • Vikas Agrawal

    (Department of Geology and Geography, West Virginia University, 98 Beechurst Ave, Morgantown, WV 26506, USA)

  • Michael C. Dix

    (Independent Researcher, 3414 Beauchamp Street, Houston, TX 77009, USA)

  • Giovanni Zanoni

    (RohmTek, 6721 Portwest Drive, Suite 100, Houston, TX 77024, USA)

  • Justin E. Birdwell

    (U.S. Geological Survey, Denver Federal Center, Box 25046 MS 977, Denver, CO 80225, USA)

  • Albert S. Wylie

    (Independent Researcher, P.O. Box 380, Mohawk, MI 49950, USA)

  • Tom Wagner

    (Coterra Energy Inc., 2000 Park Lane, Suite 300, Pittsburgh, PA 15275, USA)

Abstract

This study focuses on understanding the association of rare earth elements (REE; lanthanides + yttrium + scandium) with organic matter from the Middle Devonian black shales of the Appalachian Basin. Developing a better understanding of the role of organic matter (OM) and thermal maturity in REE partitioning may help improve current geochemical models of REE enrichment in a wide range of black shales. We studied relationships between whole rock REE content and total organic carbon (TOC) and compared the correlations with a suite of global oil shales that contain TOC as high as 60 wt.%. The sequential leaching of the Appalachian shale samples was conducted to evaluate the REE content associated with carbonates, Fe–Mn oxyhydroxides, sulfides, and organics. Finally, the residue from the leaching experiment was analyzed to assess the mineralogical changes and REE extraction efficiency. Our results show that heavier REE (HREE) have a positive correlation with TOC in our Appalachian core samples. However, data from the global oil shales display an opposite trend. We propose that although TOC controls REE enrichment, thermal maturation likely plays a critical role in HREE partitioning into refractory organic phases, such as pyrobitumen. The REE inventory from a core in the Appalachian Basin shows that (1) the total REE ranges between 180 and 270 ppm and the OM-rich samples tend to contain more REE than the calcareous shales; (2) there is a relatively higher abundance of middle REE (MREE) to HREE than lighter REE (LREE); (3) there is a disproportionate increase in Y and Tb with TOC likely due to the rocks being over-mature; and (4) the REE extraction demonstrates that although the OM has higher HREE concentration, the organic leachates contain more LREE, suggesting it is more challenging to extract HREE from OM than using traditional leaching techniques.

Suggested Citation

  • Shailee Bhattacharya & Shikha Sharma & Vikas Agrawal & Michael C. Dix & Giovanni Zanoni & Justin E. Birdwell & Albert S. Wylie & Tom Wagner, 2024. "Influence of Organic Matter Thermal Maturity on Rare Earth Element Distribution: A Study of Middle Devonian Black Shales from the Appalachian Basin, USA," Energies, MDPI, vol. 17(9), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2107-:d:1384848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William E. Stein & Frank Mannolini & Linda VanAller Hernick & Ed Landing & Christopher M. Berry, 2007. "Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa," Nature, Nature, vol. 446(7138), pages 904-907, April.
    2. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
    2. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    3. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    4. Kuchler, Magdalena & Höök, Mikael, 2020. "Fractured visions: Anticipating (un)conventional natural gas in Poland," Resources Policy, Elsevier, vol. 68(C).
    5. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    6. Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
    7. Reda Abdel Azim & Saad Alatefi & Ahmad Alkouh, 2023. "A Coupled Poro-Elastic Fluid Flow Simulator for Naturally Fractured Reservoirs," Energies, MDPI, vol. 16(18), pages 1-26, September.
    8. Rongrong Li & Xue-Ting Jiang, 2017. "Inequality of Carbon Intensity: Empirical Analysis of China 2000–2014," Sustainability, MDPI, vol. 9(5), pages 1-12, April.
    9. Blundell, Wesley & Kokoza, Anatolii, 2022. "Natural gas flaring, respiratory health, and distributional effects," Journal of Public Economics, Elsevier, vol. 208(C).
    10. Wang, Qiang & Li, Rongrong, 2016. "Impact of cheaper oil on economic system and climate change: A SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 925-931.
    11. Centner, Terence J., 2016. "Reducing pollution at five critical points of shale gas production: Strategies and institutional responses," Energy Policy, Elsevier, vol. 94(C), pages 40-46.
    12. Li, Yanbin & Li, Yun & Wang, Bingqian & Chen, Zhuoer & Nie, Dan, 2016. "The status quo review and suggested policies for shale gas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 420-428.
    13. Su, Chi-Wei & Wu, Ying & Qin, Meng, 2025. "Preserving energy security: Can renewable energy withstand the energy-related uncertainty risk?," Energy, Elsevier, vol. 320(C).
    14. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    15. Temitope Love Baiyegunhi & Christopher Baiyegunhi & Benedict Kinshasa Pharoe, 2022. "Global Research Trends on Shale Gas from 2010–2020 Using a Bibliometric Approach," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    16. Xuedong Guo & Xing Chen & Yingsong Li & Zhun Li & Wei Guo, 2019. "Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    17. Guanglin Pi & Xiucheng Dong & Cong Dong & Jie Guo & Zhengwei Ma, 2015. "The Status, Obstacles and Policy Recommendations of Shale Gas Development in China," Sustainability, MDPI, vol. 7(3), pages 1-20, February.
    18. Guliyev, Farid, 2020. "Trump’s “America first” energy policy, contingency and the reconfiguration of the global energy order," Energy Policy, Elsevier, vol. 140(C).
    19. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    20. Mandadige Samintha Anne Perera & Kadinappuli Hewage Suresh Madushan Sampath & Pathegama Gamage Ranjith & Tharaka Dilanka Rathnaweera, 2018. "Effects of Pore Fluid Chemistry and Saturation Degree on the Fracability of Australian Warwick Siltstone," Energies, MDPI, vol. 11(10), pages 1-15, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2107-:d:1384848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.