IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2079-d1383888.html
   My bibliography  Save this article

A Mini Review on Sewage Sludge and Red Mud Recycling for Thermal Energy Storage

Author

Listed:
  • Yaxuan Xiong

    (Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Aitonglu Zhang

    (Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Yanqi Zhao

    (Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Qian Xu

    (School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Yulong Ding

    (Birmingham Center for Energy Storage, University of Birmingham, Birmingham B15 2TT, UK)

Abstract

Sewage sludge and red mud, as common industrial waste, have become a research hotspot in the field of achieving carbon peaking and carbon neutrality, reducing carbon emissions, and solving environmental problems. However, their treatment and disposal have always been a difficult problem in the environmental field. Utilizing these two materials for thermal energy storage can not only improve energy utilization efficiency but also further reduce carbon emissions during their treatment process, providing a new approach for sustainable development in the industrial sector. This article summarizes the research progress for the resource recovery of sewage sludge and red mud for direct thermal energy recovery and composite phase change energy storage. After proper treatment, sludge and red mud can be directly used as energy storage materials. In addition, sludge and red mud can be combined with phase change materials to prepare composite materials with an excellent energy storage performance. This composite has broad application prospects in fields such as solar energy utilization and building energy efficiency. However, there are still some challenges and issues in this resource recovery and utilization, such as potential environmental pollution during the treatment process, the long-term stability of energy storage materials, and cost-effectiveness, which require further research and resolution. The purpose of this paper is to evaluate the potential of sewage sludge and red mud as energy storage materials, to explore their feasibility and advantages in practical applications, and to reveal the research progress, technical challenges, and future development directions of these two materials in the field of thermal energy storage.

Suggested Citation

  • Yaxuan Xiong & Aitonglu Zhang & Yanqi Zhao & Qian Xu & Yulong Ding, 2024. "A Mini Review on Sewage Sludge and Red Mud Recycling for Thermal Energy Storage," Energies, MDPI, vol. 17(9), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2079-:d:1383888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sakaveli, Foteini & Petala, Maria & Tsiridis, Vasilios & Karas, Panagiotis A. & Karpouzas, Dimitrios G. & Darakas, Efthymios, 2023. "Effect of attapulgite on anaerobic digestion of primary sludge and downstream valorization of produced biosolids," Renewable Energy, Elsevier, vol. 217(C).
    2. Li, Chuan & Li, Qi & Cong, Lin & jiang, Feng & Zhao, Yanqi & Liu, Chuanping & Xiong, Yaxuan & Chang, Chun & Ding, Yulong, 2019. "MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properti," Applied Energy, Elsevier, vol. 250(C), pages 81-91.
    3. Mohan, Gowtham & Venkataraman, Mahesh B. & Coventry, Joe, 2019. "Sensible energy storage options for concentrating solar power plants operating above 600 °C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 319-337.
    4. Yu, Qinghua & Jiang, Zhu & Cong, Lin & Lu, Tiejun & Suleiman, Bilyaminu & Leng, Guanghui & Wu, Zhentao & Ding, Yulong & Li, Yongliang, 2019. "A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 237(C), pages 367-377.
    5. Wu, Songze & Zhou, Yang & Gao, Wen & Zhang, Zhexuan & Liu, Ao & Cai, Ranran & Wu, Chong & Peng, Xingfa & Li, Shibo & Li, Cuiwei & Yu, Wenbo & Huang, Zhenying, 2024. "Preparation and properties of shape-stable phase change material with enhanced thermal conductivity based on SiC porous ceramic carrier made of iron tailings," Applied Energy, Elsevier, vol. 355(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Akiyama, Tomohiro & Nomura, Takahiro, 2020. "Fabrication of heat storage pellets composed of microencapsulated phase change material for high-temperature applications," Applied Energy, Elsevier, vol. 265(C).
    2. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Grosu, Yaroslav & Zhao, Yanqi & Giacomello, Alberto & Meloni, Simone & Dauvergne, Jean-Luc & Nikulin, Artem & Palomo, Elena & Ding, Yulong & Faik, Abdessamad, 2020. "Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials," Applied Energy, Elsevier, vol. 269(C).
    5. Hou, Yicheng & Qiu, Jun & Wang, Wei & He, Xibo & Ayyub, Mubashar & Shuai, Yong, 2022. "Preparation and performance improvement of chlorides/MgO ceramics shape-stabilized phase change materials with expanded graphite for thermal energy storage system," Applied Energy, Elsevier, vol. 316(C).
    6. Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
    7. Bailera, Manuel & Pascual, Sara & Lisbona, Pilar & Romeo, Luis M., 2021. "Modelling calcium looping at industrial scale for energy storage in concentrating solar power plants," Energy, Elsevier, vol. 225(C).
    8. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    9. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    10. Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).
    11. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Liu, Ming & Riahi, Soheila & Jacob, Rhys & Belusko, Martin & Bruno, Frank, 2020. "Design of sensible and latent heat thermal energy storage systems for concentrated solar power plants: Thermal performance analysis," Renewable Energy, Elsevier, vol. 151(C), pages 1286-1297.
    13. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
    15. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
    16. Ji Li & Weiqing Wang & Yimin Deng & Long Gao & Junchao Bai & Lei Xu & Jun Chen & Zhi Yuan, 2023. "Thermal Performance Analysis of Composite Phase Change Material of Myristic Acid-Expanded Graphite in Spherical Thermal Energy Storage Unit," Energies, MDPI, vol. 16(11), pages 1-24, June.
    17. Dai, Renkun & Li, Wei & Mostaghimi, Javad & Wang, Qiuwang & Zeng, Min, 2020. "On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method," Applied Energy, Elsevier, vol. 275(C).
    18. Kondaiah, P. & Pitchumani, R., 2023. "Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 205(C), pages 956-991.
    19. Bashiri Rezaie, Ali & Montazer, Majid, 2020. "Shape-stable thermo-responsive nano Fe3O4/fatty acids/PET composite phase-change material for thermal energy management and saving applications," Applied Energy, Elsevier, vol. 262(C).
    20. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2079-:d:1383888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.