IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1857-d1374988.html
   My bibliography  Save this article

Assessment of Syngas Storage Tank Hazards Taking Account of the Domino Effect

Author

Listed:
  • Andrzej Rusin

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

  • Katarzyna Stolecka-Antczak

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

Abstract

In most countries energy needs are satisfied using fossil fuels. Fossil fuel combustion involves environmental pollution and greenhouse gas emissions. The effect of the depletion of natural resources and the growing awareness of the need to protect the environment are the reasons that clean energy and alternative energy sources have been significant research issues. One of the most important technologies enabling efficient generation of low-emission energy is the gasification process of synthesis gas production. Syngas is primarily composed of hydrogen and carbon monoxide, but depending on the feedstock, it can also contain smaller concentrations, e.g., of carbon dioxide, methane and nitrogen. Because synthesis gas contains flammable and toxic substances, it may pose hazards to humans and the environment at every stage of gas production, storage, transport or final utilization if released uncontrollably. This paper presents the results of analyses related to hazards created by an uncontrollable release of synthesis gas during storage. A failure of a syngas system may cause damage to other, subsequent technological systems and facilities located in the neighborhood and containing dangerous substances. The problem gains special significance if syngas is stored in many tanks, where a failure of one may result in damage to subsequent tanks due to the so-called domino effect. The conditions in which the domino effect may occur are analyzed and the effect occurrence probability is determined depending on the mutual location of the tanks.

Suggested Citation

  • Andrzej Rusin & Katarzyna Stolecka-Antczak, 2024. "Assessment of Syngas Storage Tank Hazards Taking Account of the Domino Effect," Energies, MDPI, vol. 17(8), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1857-:d:1374988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1857/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stolecka, Katarzyna & Rusin, Andrzej, 2020. "Analysis of hazards related to syngas production and transport," Renewable Energy, Elsevier, vol. 146(C), pages 2535-2555.
    2. Reinhard Rauch & Jitka Hrbek & Hermann Hofbauer, 2014. "Biomass gasification for synthesis gas production and applications of the syngas," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 343-362, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    3. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    4. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    5. Emanuele Di Bisceglie & Alessandro Antonio Papa & Armando Vitale & Umberto Pasqual Laverdura & Andrea Di Carlo & Enrico Bocci, 2025. "Optimization of Biomass to Bio-Syntetic Natural Gas Production: Modeling and Assessment of the AIRE Project Plant Concept," Energies, MDPI, vol. 18(3), pages 1-23, February.
    6. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    7. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    8. Kuba, Matthias & Kraft, Stephan & Kirnbauer, Friedrich & Maierhans, Frank & Hofbauer, Hermann, 2018. "Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass," Applied Energy, Elsevier, vol. 210(C), pages 230-240.
    9. Konstantinos Chandolias & Enise Pekgenc & Mohammad J. Taherzadeh, 2019. "Floating Membrane Bioreactors with High Gas Hold-Up for Syngas-to-Biomethane Conversion," Energies, MDPI, vol. 12(6), pages 1-14, March.
    10. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    11. Stolecka, Katarzyna & Rusin, Andrzej, 2021. "Potential hazards posed by biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Feng, Hongyu & Cui, Jintao & Xu, Zhang & Hantoko, Dwi & Zhong, Li & Xu, Donghai & Yan, Mi, 2023. "Sewage sludge treatment via hydrothermal carbonization combined with supercritical water gasification: Fuel production and pollution degradation," Renewable Energy, Elsevier, vol. 210(C), pages 822-831.
    13. Justicia, Jéssica & Alberto Baeza, José & de Oliveira, Adriana S. & Calvo, Luisa & Heras, Francisco & Gilarranz, Miguel A., 2022. "Aqueous-phase reforming of water-soluble compounds from pyrolysis bio-oils," Renewable Energy, Elsevier, vol. 199(C), pages 895-907.
    14. Martin Hammerschmid & Alexander Bartik & Florian Benedikt & Marton Veress & Simon Pratschner & Stefan Müller & Hermann Hofbauer, 2023. "Economic and Ecological Impacts on the Integration of Biomass-Based SNG and FT Diesel in the Austrian Energy System," Energies, MDPI, vol. 16(16), pages 1-29, August.
    15. Flori, Giacomo & Frigo, Stefano & Barontini, Federica & Gabbrielli, Roberto & Sica, Pietro, 2024. "Experimental assessment of oxy-CO2 gasification strategy with woody biomass," Renewable Energy, Elsevier, vol. 228(C).
    16. Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).
    17. Nassef, Ahmed M. & Sayed, Enas T. & Rezk, Hegazy & Inayat, Abrar & Yousef, Bashria A.A. & Abdelkareem, Mohammad A. & Olabi, A.G., 2020. "Developing a fuzzy-model with particle swarm optimization-based for improving the conversion and gasification rate of palm kernel shell," Renewable Energy, Elsevier, vol. 166(C), pages 125-135.
    18. Janjira Hongrapipat & Reinhard Rauch & Shusheng Pang & Pansa Liplap & Weerachai Arjharn & Michael Messner & Christian Henrich & Markus Koch & Hermann Hofbauer, 2022. "Co-Gasification of Refuse Derived Fuel and Wood Chips in the Nong Bua Dual Fluidised Bed Gasification Power Plant in Thailand," Energies, MDPI, vol. 15(19), pages 1-20, October.
    19. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.
    20. Dmitrii Glushkov & Galina Nyashina & Anatolii Shvets & Amaro Pereira & Anand Ramanathan, 2021. "Current Status of the Pyrolysis and Gasification Mechanism of Biomass," Energies, MDPI, vol. 14(22), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1857-:d:1374988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.